2020年高考数学《排列 组合 二项式》专题 两个计数原理学案

上传人:艳*** 文档编号:110339640 上传时间:2022-06-18 格式:DOC 页数:3 大小:122KB
返回 下载 相关 举报
2020年高考数学《排列 组合 二项式》专题 两个计数原理学案_第1页
第1页 / 共3页
2020年高考数学《排列 组合 二项式》专题 两个计数原理学案_第2页
第2页 / 共3页
2020年高考数学《排列 组合 二项式》专题 两个计数原理学案_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
第1课时 两个计数原理基础过关1分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有N 种不同的方法2分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做n步有mn种不同的方法,那么完成这件事共有N 种不同的方法3解题方法:枚举法、插空法、隔板法典型例题例1. 高三(1)、(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)485052150种 (2)485052124800种 (3) (4)变式训练1:在直角坐标xoy平面上,平行直线x=n,(n=0,1,2,3,4,5),y=n,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A、25个 B、36个 C、100个 D、225个解:在垂直于x轴的6条直线中任意取2条,在垂直于y轴的6条直线中任意取2条,这样的4 条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有个, 故选D。例2. (1) 将5封信投入6个信箱,有多少种不同的投法?(2) 设I1,2,3,4,5,6,A与B都是I的子集,AB1,3,5,则称(A,B)为理想配,所有理想配共有多少种?(3) 随着电讯事业的发展,许多地方电话号码升位,若某地由原来7位电话号码升为8位电话号码,问升位后可多装多少门电话机?(电话号码首位不为0)解:(1)65 (2)27 (3)电话号码首位不为0:910791068.1107变式训练2:一个圆分成6个大小不等的小扇形,取来红、黄、兰、白、绿、黑6种颜色。请问:6个小扇形分别着上6种颜色有多少种不同的着色方法?从这6种颜色中任选5种着色,但相邻两个扇形不能着相同的颜色, 则有多少种不同的着色方法?解:6个小扇形分别着上6种不同的颜色,共有种着色方法.6个扇形从6种颜色中任选5种着色共有种不同的方法;其中相邻两个扇形是同一种颜色的着色方法共有;因此满足条件的着色方法共有种着色方法.例3. 如图A,B,C,D为海上的四个小岛,现在要建造三座桥,将这四个小岛连接起来,则不同的建桥方案有( )DAA、8种 B、12种 C、16种 D、20种BC解:第一类:从一个岛出发向其它三岛各建一桥,共有=4种方法;第二类:一个岛最多建设两座桥,例如:ABCD,DCBA,这样的两个排列对应一种建桥方法,因此有种方法;根据分类计数原理知道共有4+12=16种方法变式训练3:某公司招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名翻译人员不能同时分给一个部门,另三名电脑编程人员也不能同时分给一个部门,求有多少种不同的分配方案解:用分步计数原理先分英语翻译,再分电脑编程人员,最后分其余各人,故有2(33)336种例4. 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以沿不同的路径同时传递,则单位时间传递的最大信息量是( )A、26 B、24 C、20 D、19 3 5 12B 4 6 A 6 7612 8 解:要完成的这件事是:“从A向B传递信息”,完成这件事有4类办法:第一类:1253第二类 : 12 6 4第三类 :12 6 7 第四类;:12 8 6可见:第一类中单位时间传递的最大信息量是3;第二类单位时间传递的最大信息量是4; 第三类单位时间传递的最大信息量是6;第四类单位时间传递的最大信息量是6。所以由分类记数原理知道共有:3+4+6+6=19,故选D变式训练4:7个相同的小球,任意放入4个不同的盒子,则每个盒子都不空的放法有多少种?解:首先要清楚:“每个盒子都不空”的含义是“每个盒子里至少有1个球”。于是,我们采用“隔板法”来解决。在7个小球中的每两个之间分别有6个空,我们从6个空中任意选3个分别插入3块隔板,则这3块隔板就把7个小球分成4部分,而且每一部分至少有1个球。即有=20种方法,又每一种分割方法都对应着一种放球的放法。所以共有20种放球放法。注;(1)本题若采取“分类讨论”的方法来解决,则显得很麻烦;大家可以试一试。(2)隔板法只能用于“各个元素不加区别”的情况,否则不能使用.两个原理的区别在于,前者每次得到的是最后的结果,后者每次得到的是中间结果,即每次仅完成整件事情的一部分,当且仅当几个步骤全部做完后,整件事情才算完成
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!