资源描述
第2课时 排 列基础过关1一般地说,从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列排列的定义包含两个基本内容:一是“取出元素”;二是“按照一定顺序排列”因此当元素完全相同,并且元素的排列顺序也完全相同时,才是同一个排列2从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从个为不同元素中取出m个元素的排列数,用符号Amn表示排列数公式Amn 这里mn,其中等式的右边是 个连续的自然数相乘,最大的是 ,最小的是 3n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,全排列数用Ann表示,它等于自然数从1到n的连乘积,自然数从1到n的连乘积叫做n的阶乘,用 表示4解有约束条件的排列问题的方法有直接法、间接法、元素位置分析法、插空法、捆绑法、枚举法、对称法、隔板法5排列问题常用框图来处理典型例题例1、(1) 元旦前某宿舍的四位同学各写一张贺卡先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配有多少种?(2) 同一排6张编号1,2,3,4,5,6的电影票分给4人,每人至少1张,至多2张,且这两张票有连续编号,则不同分法有多少种?(3)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行那么安排这6项工程的不同排法有多少种数?解:(1)分类:9种(2)假设五个连续空位为一个整元素a,单独一个空位为一个元素b,另4人为四个元素c1、c2、c3、c4问题化为a,b,c1,c2,c3,c4的排列,条件是a,b不相邻,共有48种;(3)将丙,丁看作一个元素,设想5个位置,只要其余2项工程选择好位置,剩下3个位置按甲、乙(两丁)中唯一的,故有20种变式训练1:有2个红球、3个黄球、4个白球,同色球不加以区分, 将这9个球排成一列有 _ 种不同的方法.解:9个球排成一列有种排法,再除去2红、3黄、4白的顺序即可,故共有排法种。 答案:1260例25男4女站成一排,分别指出满足下列条件的排法种数(1) 甲站正中间的排法有 种,甲不站在正中间的排法有 种(2) 甲、乙相邻的排法有 种,甲乙丙三人在一起的排法有 种(3) 甲站在乙前的排法有 种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有 种丙在甲乙之间(不要求一定相邻)的排法有 种(4) 甲乙不站两头的排法有 种,甲不站排头,乙不站排尾的排法种有 种(5) 5名男生站在一起,4名女生站在一起的排法有 种(6) 女生互不相邻的排法有 种,男女相间的排法有 种(7) 甲与乙、丙都不相邻的排法有 种,甲乙丙三人有且只有两人相邻的排法有 种(8) 甲乙丙三人至少有1人在两端的排法有 种(9) 甲乙之间有且只有4人的排法有 种解:(1)8!, 88! (2) 28!,67!(3) 9!, 1, 21(4) 7!8!777!(5) 25!4!(6) 5!, 5!4!2(7) 9!28!227!, 36!2(8) 9!6!(9) 捆绑法24! 也可用枚举法247!变式训练2:从包含甲的若干名同学中选出4人分别参加数学、物理、化学和英语竞赛,每名同学只能参加一种竞赛,且任2名同学不能参加同一种竞赛,若甲不参加物理和化学竞赛,则共有72种不同的参赛方法,问一共有多少名同学?解:5例3. 在4000到7000之间有多少个四个数字均不相同的偶数 解:分两类类5在千位上:15280类4或6在千位上:24448故有280448728个变式训练3:3张卡片的正反面上分别有数字0和1,3和4,5和6,当把它们拼在一起组成三位数字的时可得到多少个不同的三位数(6可做9用)解:若6不能做9用,由于0不能排百位,此时有54240个这40个三位数中含数字6的有23214220个,故6可做9用时,可得三位数402060个例4. (1) 从6名短跑运动员中选4人参加4100米接力赛,问其中不跑第一棒的安排方法有多少种?(2) 一排长椅上共有10个座位,现有4人就坐,恰有5个连续空位的坐法有多少种?解:(1)先安排第四棒,再安排其他三棒的人选,故有5300种 60对(2)假设五个连续空位为一个元素A,B为单独一个空位元素,另4个为元素C1,C2,C3,C4间题转化为A,B,C1, C2,C3,C4排列,条件A,B不相邻,有480种.变式训练4:某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种(用数字作答)解:96小结归纳1解排列应用问题首先必须认真分析题意看能否把问题归结为排队(即排列)问题,较简单的排列问题常用框图或树型来处理(注意也有个别问题不能用框图来处理 如不相邻问题等)2解有约束条件的排列问题的几种策略a. 特殊元素,特殊位置优先定位(也有个别例外情况,见例1)b. 相邻问题捆绑处理不相邻问题插空处理c. 正难则反,等价转换3解排列应用问题思路一定要清晰,并随时注意转换解题角度,通过练习要认真理会解排列问题的各种方法4由于排列问题的结果一般数目较大不易直接验证,解题时要深入分析,严密周详,要防止重复和遗漏为此可用多种不同的方法求解看看结果是否相同
展开阅读全文