(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第5节 第2课时 椭圆的简单几何性质学案 理 新人教B版

上传人:彩*** 文档编号:106110091 上传时间:2022-06-13 格式:DOC 页数:13 大小:240.50KB
返回 下载 相关 举报
(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第5节 第2课时 椭圆的简单几何性质学案 理 新人教B版_第1页
第1页 / 共13页
(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第5节 第2课时 椭圆的简单几何性质学案 理 新人教B版_第2页
第2页 / 共13页
(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第5节 第2课时 椭圆的简单几何性质学案 理 新人教B版_第3页
第3页 / 共13页
点击查看更多>>
资源描述
第2课时椭圆的简单几何性质考点一椭圆的性质【例1】 (1)(2017全国卷)已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay2ab0相切,则C的离心率为()A. B. C. D.(2)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点.若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B.C. D.解析(1)以线段A1A2为直径的圆是x2y2a2,直线bxay2ab0与圆相切,所以圆心(0,0)到直线的距离da,整理为a23b2,即.e.(2)设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形.|AF|BF|4,|AF|AF0|4,a2.设M(0,b),则,1bb0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.(2)设椭圆C:1(ab0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D,若ADF1B,则椭圆C的离心率等于_.解析(1)设M(c,m),则E,OE的中点为D,则D,又B,D,M三点共线,所以,所以a3c,所以e.(2)由题意知F1(c,0),F2(c,0),其中c,因为过F2且与x轴垂直的直线为xc,由椭圆的对称性可设它与椭圆的交点为A,B.因为AB平行于y轴,且|F1O|OF2|,所以|F1D|DB|,即D为线段F1B的中点,所以点D的坐标为,又ADF1B,所以kADkF1B1,即1,整理得b22ac,所以(a2c2)2ac,又e且0e1,所以e22e0,解得e(e舍去).答案(1)A(2)考点二椭圆性质的应用【例2】 (1)(2018湖南东部六校联考)已知椭圆的中心在原点,离心率e,且它的一个焦点与抛物线y24x的焦点重合,则此椭圆方程为()A.1 B.1C.y21 D.y21(2)已知点F1,F2是椭圆x22y22的左、右焦点,点P是该椭圆上的一个动点,那么|的最小值是()A.0 B.1 C.2 D.2解析(1)依题意,可设椭圆的标准方程为1(ab0),由已知可得抛物线的焦点为(1,0),所以c1,又离心率e,解得a2,b2a2c23,所以椭圆方程为1,故选A.(2)椭圆的标准方程为y21,因为原点O是线段F1F2的中点,所以2,即|2|2|PO|,椭圆上点到中心的最短距离为短半轴长,即|PO|的最小值为b1,所以|的最小值为2.答案(1)A(2)C规律方法利用椭圆几何性质的注意点及技巧(1)在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围,离心率的范围等不等关系.(2)求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.【训练2】 (1)(2018贵州七校联考)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1 B. C.2 D.2(2)(2017全国卷)设A,B是椭圆C:1长轴的两个端点.若C上存在点M满足AMB120,则m的取值范围是()A.(0,19,) B.(0,9,)C.(0,14,) D.(0,4,)解析(1)设a,b,c分别为椭圆的长半轴长,短半轴长,半焦距,依题意知,当三角形的高为b时面积最大,所以2cb1,bc1,而2a222(当且仅当bc1时取等号),故选D.(2)当焦点在x轴上,依题意得0m3,且tan.0m3且m1,则03,且tan,m9,综上,m的取值范围是(0,19,).答案(1)D(2)A考点三直线与椭圆(多维探究)命题角度1弦及中点弦问题【例31】 已知椭圆y21,(1)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;(2)求过点P且被P点平分的弦所在直线的方程.解(1)设弦的端点为P(x1,y1),Q(x2,y2),其中点是M(x,y).得,所以,化简得x22x2y22y0(包含在椭圆y21内部的部分).(2)由(1)可得弦所在直线的斜率为k,因此所求直线方程是y,化简得2x4y30.规律方法弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数关系表示中点;(2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.命题角度2直线与椭圆的位置关系(易错警示)【例32】 (2018沈阳质检)已知P点坐标为(0,2),点A,B分别为椭圆E:1(ab0)的左、右顶点,直线BP交E于点Q,ABP是等腰直角三角形,且.(1)求椭圆E的方程;(2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.解(1)由ABP是等腰直角三角形,得a2,B(2,0).设Q(x0,y0),则由,得代入椭圆方程得b21,所以椭圆E的方程为y21.(2)依题意得,直线l的斜率存在,方程设为ykx2.联立消去y并整理得(14k2)x216kx120.(*)因直线l与E有两个交点,即方程(*)有不等的两实根,故(16k)248(14k2)0,解得k2.设M(x1,y1),N(x2,y2),由根与系数的关系得因坐标原点O位于以MN为直径的圆外,所以0,即x1x2y1y20,又由x1x2y1y2x1x2(kx12)(kx22)(1k2)x1x22k(x1x2)4(1k2)2k40,解得k24,综上可得k24,则k2或2k0)的直线交E于A,M两点,点N在E上,MANA.(1)当t4,|AM|AN|时,求AMN的面积;(2)当2|AM|AN|时,求k的取值范围.解(1)设M(x1,y1),则由题意知y10.当t4时,E的方程为1,A(2,0).由|AM|AN|及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为yx2.将xy2代入1得7y212y0,解得y0或y,所以y1.因此AMN的面积SAMN2.(2)由题意t3,k0,A(,0),将直线AM的方程yk(x)代入1得(3tk2)x22tk2xt2k23t0.由x1()得x1,故|AM|x1|.由题设,直线AN的方程为y(x),故同理可得|AN|.由2|AM|AN|得,即(k32)t3k(2k1),当k时上式不成立,因此t.t3等价于0,即0.由此得或解得k0且m3及m0得m1且m3.答案B2.设椭圆C:1(ab0)的左、右焦点分别为F1,F2,P是C上的点,PF2F1F2,PF1F230,则C的离心率为()A. B.C. D.解析在RtPF2F1中,令|PF2|1,因为PF1F230,所以|PF1|2,|F1F2|.故e.故选D.答案D3.(2018石家庄质检)设椭圆1(m0,n0)的右焦点与抛物线y28x的焦点相同,离心率为,则此椭圆的方程为()A.1 B.1C.1 D.1解析由抛物线y28x的焦点为(2,0),可知椭圆焦点在x轴上,且椭圆的半焦距c2,可设椭圆的方程为1(ab0),因为离心率e,所以a4,b2a2c212,即椭圆的方程为1.答案B4.(2018武汉调研)已知椭圆C:1(ab0)及点B(0,a),过点B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则ABF()A.60 B.90 C.120 D.150解析由题意知,切线的斜率存在,设切线方程ykxa(k0),与椭圆方程联立消去y整理得(b2a2k2)x22ka3xa4a2b20,由(2ka3)24(b2a2k2)(a4a2b2)0,得k,从而yxa交x轴于点A,又F(c,0),易知0,故ABF90.答案B5.(2018许昌模拟)设F1(c,0),F2(c,0)分别是椭圆1(ab0)的左、右焦点,若在直线x上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()A. B.C. D.解析如图,由题意可知,|PF1|PF2|且|PF1|F1F2|,所以要使PF1F2为等腰三角形,则只能是|F1F2|PF2|,设P点坐标为,则直线x与x轴的交点为D,则|PF2|F1F2|2cc,即3c2a20,即e2.解得e1.答案D二、填空题6.(选修21P49A5(3)改编)焦距是8,离心率等于0.8的椭圆的标准方程为_.解析由题意知解得又b2a2c2,b29,b3.当焦点在x轴上时,椭圆方程为1,当焦点在y轴上时,椭圆方程为1.答案1或17.已知椭圆的方程是x22y240,则以M(1,1)为中点的弦所在直线方程是_.解析设过M(1,1)点的方程为ykxb,则有kb1,即b1k,即ykx(1k),联立方程组则有(12k2)x2(4k4k2)x(2k24k2)0,所以1,解得k,故b,所以yx,即x2y30.答案x2y308.若F1,F2分别是椭圆E:x21(0bb0).由题意得解得c.所以b2a2c21.所以椭圆C的方程为y21.(2)证明设M(m,n),则D(m,0),N(m,n).由题设知m2,且n0.直线AM的斜率kAM,故直线DE的斜率kDE.所以直线DE的方程为y(xm).直线BN的方程为y(x2).联立解得点E的纵坐标yE.由点M在椭圆C上,得4m24n2,所以yEn.又SBDE|BD|yE|BD|n|,SBDN|BD|n|.所以BDE与BDN的面积之比为45.10.(2018山西晋城一中、忻州一中等五校联考)已知A,B分别为椭圆C:1(ab0)在x轴正半轴、y轴正半轴上的顶点,原点O到直线AB的距离为,且|AB|.(1)求椭圆C的离心率;(2)直线l:ykxm与圆x2y22相切,并与椭圆C交于M,N两点,若|MN|,求k的值.解(1)由|AB|,ab0,计算得出a2,b,则椭圆C的离心率为e.(2)由(1)知椭圆方程为1,设M(x1,y1),N(x2,y2),则消去y得,(3k24)x26kmx3m2120,直线l与椭圆相交,则0,即48(3k2m24)0,且x1x2,x1x2.又直线l与圆x2y22相切,则,即m22(k21).而|MN|,又|MN|,所以,即5k43k220,解得k1,且满足0,故k的值为1.能力提升题组(建议用时:20分钟)11.已知椭圆C:1的左、右焦点分别为F1,F2,椭圆C上点A满足AF2F1F2.若点P是椭圆C上的动点,则的最大值为()A. B. C. D.解析由椭圆C:1可得a24,b23,c1,可得F1(1,0),F2(1,0),由AF2F1F2,令x1,得y,不妨设A点坐标为,设P(m,n),则点P坐标满足1,又n,则(m1,n)n,可得的最大值为.答案B12.已知直线l:ykx2过椭圆1(ab0)的上顶点B和左焦点F,且被圆x2y24截得的弦长为L,若L,则椭圆离心率e的取值范围是_.解析依题意,知b2,kc2.设圆心到直线l的距离为d,则L2,解得d2.又因为d,所以,解得k2.于是e2,所以0e2,解得0e.答案13.(2018东北三省四校联考)已知椭圆C:1(ab0),e,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且(其中1).(1)求椭圆C的标准方程;(2)求实数的值.解(1)由条件可知,c1,a2,故b2a2c23,椭圆C的标准方程是1.(2)由,可知A,B,F三点共线,设点A(x1,y1),点B(x2,y2).若直线ABx轴,则x1x21,不符合题意.当AB所在直线l的斜率k存在时,设方程为yk(x1).由消去y得(34k2)x28k2x4k2120.由的判别式64k44(4k23)(4k212)144(k21)0.x1x2,k2.将k2代入方程,得4x22x110,解得x.又(1x1,y1),(x21,y2),又1,.13
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!