资源描述
突破点15函数与方程 (对应学生用书第55页)核心知识提炼提炼1 函数yf(x)零点个数的判断(1)代数法:求方程f(x)0的实数根(2)几何法:对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,并利用函数的性质找出零点(3)定理法:利用函数零点的存在性定理,即如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数yf(x)在区间(a,b)内有零点.提炼2 已知函数零点个数,求参数的值或取值范围已知函数零点个数,求参数的值或取值范围问题,一般利用数形结合转化为两个函数图象的交点个数问题要注意观察是否需要将一个复杂函数转化为两个相对较为简单的函数,常转化为定曲线与动直线问题高考真题回访回访函数的零点问题1(2011浙江高考)设a,b,c为实数,f(x)(xa)(x2bxc),g(x)(ax1)(ax2bx1)记集合Sx|f(x)0,xR,Tx|g(x)0,xR,若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是()A|S|1且|T|0B|S|1且|T|1C|S|2且|T|2D|S|2且|T|3D对于选项A,取abc0,则f(x)x3,g(x)1,则|S|1且|T|0,故A可能成立;对于选项B,取a1,b0,c1,则f(x)(x1)(x21),g(x)(x1)(x21),则|S|1且|T|1,故B可能成立;对于选项C,取a1,b3,c2,则f(x)(x1)2(x2),g(x)(x1)2(2x1),则|S|2且|T|2,故C可能成立故选D.2(2015浙江高考)设函数f(x)x2axb(a,bR)(1)当b1时,求函数f(x)在1,1上的最小值g(a)的表达式;(2)已知函数f(x)在1,1上存在零点,0b2a1,求b的取值范围解(1)当b1时,f(x)21,故对称轴为直线x.2分当a2时,g(a)f(1)a2.当22时,g(a)f(1)a2.综上,g(a)6分(2)设s,t为方程f(x)0的解,且1t1,则9分由于0b2a1,因此s(1t1)当0t1时,st.11分由于0和94,所以b94.当1t0时,st,13分由于20和30,所以3b0.故b的取值范围是3,94.15分(对应学生用书第56页)热点题型1函数零点个数的判断题型分析:函数零点个数的判断常与函数的奇偶性、对称性、单调性相结合命题,难度中等偏难.【例1】(1)已知定义在R上的函数f(x)满足:图象关于(1,0)点对称;f(1x)f(1x);当x1,1时,f(x)则函数yf(x)|x|在区间3,3上的零点个数为()A5B6C7D8(2)已知定义在R上的奇函数yf(x)的图象关于直线x1对称,当0x1时,f(x)logx,则方程f(x)10在(0,6)内的零点之和为() 【导学号:68334141】A8B10 C12D16(1)A(2)C(1)因为f(1x)f(1x),所以函数f(x)的图象关于直线x1对称,又函数f(x)的图象关于点(1,0)对称,如图所示,画出f(x)以及g(x)|x|在3,3上的图象,由图可知,两函数图象的交点个数为5,所以函数yf(x)|x|在区间3,3上的零点个数为5,故选A.(2)因为函数f(x)为定义在R上的奇函数,所以当1x0时,f(x)f(x)log(x),又因为函数f(x)的图象关于直线x1对称,所以函数f(x)的图象的对称轴为x2k1,kZ,在平面直角坐标系内画出函数f(x)的大致图象如图所示,由图易得直线y1与函数f(x)的图象在(0,6)内有四个交点,且分别关于直线x1和x5对称,所以方程f(x)10在(0,6)内的零点之和为212512,故选C.方法指津求解此类函数零点个数的问题时,通常把它转化为求两个函数图象的交点个数问题来解决.函数F(x)f(x)g(x)的零点就是方程f(x)g(x)的实数根,也就是函数yg(x)的图象与函数yf(x)的图象交点的横坐标.其解题的关键步骤为:分解为两个简单函数;在同一坐标系内作出这两个函数的图象;数交点的个数,即原函数的零点的个数.提醒:在画函数图象时,切忌随手一画,注意“草图不草”,画图时应注意基本初等函数图象的应用,以及函数性质(如单调性、奇偶性、对称性等)的适时运用,可加快画图速度,从而将问题简化. 变式训练1(1)定义在R上的奇函数f(x),当x0时,f(x)则关于x的函数F(x)f(x)a(0a1)的零点个数为()A2B3 C4D5(2)已知函数f(x)cos x,g(x)2|x2|,x2,6,则函数h(x)f(x)g(x)的所有零点之和为()A6B8 C10D12(1)D(2)D(1)在同一坐标系中画出函数yf(x)和ya(0a1)的图象,如图所示:两图象共有5个交点,所以F(x)有5个零点(2)函数h(x)f(x)g(x)的零点之和可转化为f(x)g(x)的根之和,即转化为y1f(x)和y2g(x)两个函数图象的交点的横坐标之和又由函数g(x)2|x2|与f(x)的图象均关于x2对称,可知函数h(x)的零点之和为12.热点题型2已知函数的零点个数求参数的取值范围题型分析:已知函数的零点个数求参数的取值范围,主要考查学生的数形结合思想和分类讨论思想,对学生的画图能力有较高要求.【例2】(1)已知函数f(x)且g(x)f(x)mxm在(1,1内有且仅有两个不同的零点,则实数m的取值范围是()A.B.C.D.(2)(名师押题)已知函数f(x)g(x)kx1(xR),若函数yf(x)g(x)在x2,3内有4个零点,则实数k的取值范围是()A.B(2,)C.D(2,4(1)A(2)C(1)令g(x)0,则f(x)m(x1),故函数g(x)在(1,1内有且仅有两个不同的零点等价于函数yf(x)的图象与直线ym(x1)有且仅有两个不同的交点函数f(x)的图象如图中实线所示易求kAB,kAC2,过A(1,0)作曲线的切线,不妨设切线方程为yk(x1),由得kx2(2k3)x2k0,则(2k3)24k(2k)0,解得k.故实数m的取值范围为.(2)当x0时,显然有f(x)g(x),即x0不是yf(x)g(x)的零点当x0时,yf(x)g(x)在x2,3内的零点个数即方程f(x)g(x)(2x3)的实根的个数当0x3时,有kx1x23,即kx;当2x0时,有kx114xcos x,即k4cos x.则yf(x)g(x)(2x3)的零点个数等价于函数yk与y的图象的交点个数,作出这两个函数的图象,如图所示,由图知2k,故选C.方法指津求解此类逆向问题的关键有以下几点:一是将原函数的零点个数问题转化为方程根的个数问题,并进行适当化简、整理;二是构造新的函数,把方程根的个数问题转化为新构造的两个函数的图象交点个数问题;三是对新构造的函数进行画图;四是观察图象,得参数的取值范围.,提醒:把函数零点转化为方程的根,在构造两个新函数的过程中,一般是构造图象易得的函数,最好有一条是直线,这样在判断参数的取值范围时可快速准确地得到结果. 变式训练2(1)已知f(x)是奇函数并且是R上的单调函数,若函数yf(2x21)f(x)只有一个零点,则实数的值是() 【导学号:68334142】A.B.CD(2)设函数f(x)是定义在R上的周期为2的函数,且对任意的实数x,恒有f(x)f(x)0,当x1,0时,f(x)x2,若g(x)f(x)logax在x(0,)上有且仅有三个零点,则a的取值范围为()A3,5B4,6C(3,5)D(4,6)(1)C(2)C(1)令yf(2x21)f(x)0,且f(x)是奇函数,则f(2x21)f(x)f(x),又因为f(x)是R上的单调函数,所以2x21x只有一个零点,即2x2x10只有一个零点,则18(1)0,解得,故选C.(2)因为f(x)f(x)0,所以f(x)f(x),所以f(x)是偶函数,根据函数的周期性和奇偶性作出f(x)的图象如图所示:因为g(x)f(x)logax在x(0,)上有且仅有三个零点,所以yf(x)和ylogax的图象在(0,)上只有三个交点,所以解得3a5.7
展开阅读全文