(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题5 概率与统计学案 理

上传人:彩*** 文档编号:105639746 上传时间:2022-06-12 格式:DOC 页数:14 大小:288.50KB
返回 下载 相关 举报
(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题5 概率与统计学案 理_第1页
第1页 / 共14页
(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题5 概率与统计学案 理_第2页
第2页 / 共14页
(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题5 概率与统计学案 理_第3页
第3页 / 共14页
点击查看更多>>
资源描述
回扣5概率与统计1分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,在第n类办法中有mn种方法,那么完成这件事共有Nm1m2mn种方法(也称加法原理)2分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,做第n步有mn种方法,那么完成这件事共有Nm1m2mn种方法(也称乘法原理)3排列 (1)排列的定义:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(2)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示(3)排列数公式:An(n1)(n2)(nm1)(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,An(n1)(n2)21n!.排列数公式写成阶乘的形式为A,这里规定0!1.4组合(1)组合的定义:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示(3)组合数的计算公式:C,由于0!1,所以C1.(4)组合数的性质:CC;CCC.5二项式定理(ab)nCanCan1b1CankbkCbn(nN*)这个公式叫做二项式定理,右边的多项式叫做(ab)n的二项展开式,其中的系数C(k0,1,2,n)叫做二项式系数式中的Cankbk叫做二项展开式的通项,用Tk1表示,即展开式的第k1项:Tk1Cankbk.6二项展开式形式上的特点(1)项数为n1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式的系数从C,C,一直到C,C.7二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即CC.(2)增减性与最大值:二项式系数C,当k时,二项式系数是递减的当n是偶数时,那么其展开式中间一项的二项式系数最大当n是奇数时,那么其展开式中间两项和的二项式系数相等且最大(3)各二项式系数的和(ab)n的展开式的各个二项式系数的和等于2n,即CCCCC2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即CCCCCC2n1.8概率的计算公式(1)古典概型的概率计算公式P(A);(2)互斥事件的概率计算公式P(AB)P(A)P(B);(3)对立事件的概率计算公式P()1P(A);(4)几何概型的概率计算公式P(A).(5)条件概率公式P(B|A).9抽样方法简单随机抽样、分层抽样、系统抽样(1)从容量为N的总体中抽取容量为n的样本,则每个个体被抽到的概率都为;(2)分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量10统计中四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据(2)中位数:在样本数据中,将数据按大小排列,位于最中间的数据如果数据的个数为偶数,就取中间两个数据的平均数作为中位数(3)平均数:样本数据的算术平均数,即(x1x2xn)(4)方差与标准差方差:s2(x1)2(x2)2(xn)2标准差:s.11离散型随机变量(1)离散型随机变量的分布列的两个性质pi0(i1,2,n);p1p2pn1.(2)期望公式E(X)x1p1x2p2xnpn.(3)期望的性质E(aXb)aE(X)b;若XB(n,p),则E(X)np;若X服从两点分布,则E(X)p.(4)方差公式D(X)x1E(X)2p1x2E(X)2p2xnE(X)2pn,标准差为.(5)方差的性质D(aXb)a2D(X);若XB(n,p),则D(X)np(1p);若X服从两点分布,则D(X)p(1p)(6)独立事件同时发生的概率计算公式P(AB)P(A)P(B)(7)独立重复试验的概率计算公式Pn(k)Cpk(1p)nk.12线性回归线性回归方程x一定过样本点的中心(,)13独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验如果K2的观测值k越大,说明“两个分类变量有关系”的可能性越大14正态分布如果随机变量X服从正态分布,则记为XN(,2)满足正态分布的三个基本概率的值是:P(X)0.682 6;P(2X2)0.954 4;P(3,则p的取值范围是_答案解析由已知得P(1)p,P(2)(1p)p,P(3)(1p)2,则E()p2(1p)p3(1p)2p23p3,解得p或p,又p(0,1),所以p.15某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0p1)经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放某厂现有4个标准水量的A级水池,分别取样、检测多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验混合样本中只要有样本不达标,则混合样本的化验结果必不达标若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放现有以下四种方案:方案一:逐个化验;方案二:平均分成两组化验;方案三:三个样本混在一起化验,剩下的一个单独化验;方案四:混在一起化验化验次数的期望值越小,则方案越“优”(1)若p,求2个A级水样本混合化验结果不达标的概率;(2)若p,现有4个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?(3)若“方案三”比“方案四”更“优”,求p的取值范围解(1)该混合样本达标的概率是2,所以根据对立事件原理,不达标的概率为1.(2)方案一:逐个检测,检测次数为4.方案二:由(1)知,每组两个样本检测时,若达标则检测次数为1,概率为;若不达标则检测次数为3,概率为.故方案二的检测次数记为2,2的可能取值为2,4,6.其分布列如下,2246P2C2可求得方案二的期望为E(2)246,方案四:混在一起检测,记检测次数为4,4可取1,5.其分布列如下,415P414可求得方案四的期望为E(4)15.比较可得E(4)E(2)4,故选择方案四最“优”(3)方案三:设化验次数为3,3可取2,5.325Pp31p3E(3)2p35(1p3)53p3;方案四:设化验次数为4,4可取1,5.415Pp41p4E(4)1p45(1p4)54p4;由题意得E(3)E(4)53p354p4p.故当0p时,方案三比方案四更“优”16(2017全国)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量50 kg箱产量50 kg总计旧养殖法新养殖法总计(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:P(K2k0)0.0500.0100.001k03.8416.63510.828K2.解(1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”由题意知,P(A)P(BC)P(B)P(C)旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62,故P(B)的估计值为0.62.新养殖法的箱产量不低于50 kg的频率为(0.0680.0460.0100.008)50.66,故P(C)的估计值为0.66.因此事件A的概率估计值为0.620.660.409 2.(2)根据箱产量的频率分布直方图得列联表箱产量6.635,故有99%的把握认为箱产量与养殖方法有关(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg的直方图面积为(0.0040.0200.044)50.340.5,故新养殖法箱产量的中位数的估计值为5052.35(kg)14
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!