2021高考数学一轮复习 第2章 函数 第9节 函数与方程教学案 文 北师大版

上传人:彩*** 文档编号:105442356 上传时间:2022-06-12 格式:DOC 页数:7 大小:368.50KB
返回 下载 相关 举报
2021高考数学一轮复习 第2章 函数 第9节 函数与方程教学案 文 北师大版_第1页
第1页 / 共7页
2021高考数学一轮复习 第2章 函数 第9节 函数与方程教学案 文 北师大版_第2页
第2页 / 共7页
2021高考数学一轮复习 第2章 函数 第9节 函数与方程教学案 文 北师大版_第3页
第3页 / 共7页
点击查看更多>>
资源描述
第九节函数与方程最新考纲结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数(对应学生用书第33页)1函数的零点(1)定义:函数yf(x)的图像与横轴的交点的横坐标称为这个函数的零点(2)函数零点与方程根的关系:方程f(x)0有实根函数yf(x)的图像与x轴有交点函数yf(x)有零点(3)零点存在性定理若函数yf(x)在闭区间a,b上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)0,则在区间(a,b)内,函数yf(x)至少有一个零点,即相应方程f(x)0在区间(a,b)内至少有一个实数解2二次函数yax2bxc(a0)的图像与零点的关系000二次函数yax2bxc(a0)的图像与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号(3)连续不断的函数图像通过零点时,函数值可能变号,也可能不变号一、思考辨析(正确的打“”,错误的打“”)(1)函数的零点就是函数的图像与x轴的交点()(2)函数yf(x)在区间(a,b)内有零点(函数图像连续不断),则f(a)f(b)0.()(3)若函数f(x)在(a,b)上单调且f(a)f(b)0,则函数f(x)在a,b上有且只有一个零点()(4)二次函数yax2bxc在b24ac0时没有零点()答案(1)(2)(3)(4)二、教材改编1已知函数yf(x)的图像是连续不断的曲线,且有如下的对应值表:x123456y124.4337424.536.7123.6则函数yf(x)在区间1,6上的零点至少有()A2个B3个C4个D5个Bf(2)f(3)0,f(3)f(4)0,f(4)f(5)0,故函数f(x)在区间1,6内至少有3个零点2函数f(x)ln x2x6的零点所在的区间是()A(0,1)B(1,2)C(2,3)D(3,4)C由题意得f(1)ln 12640,f(2)ln 246ln 220,f(3)ln 366ln 30,f(4)ln 486ln 420,f(x)的零点所在的区间为(2,3)3函数f(x)ex3x的零点个数是_1由已知得f(x)ex30,所以f(x)在R上单调递增,又f(1)30,f(0)10,因此函数f(x)有且只有一个零点4函数f(x)x的零点个数为_1作函数y1x和y2的图像如图所示由图像知函数f(x)有1个零点(对应学生用书第33页)考点1函数零点所在区间的判定判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程;(2)零点存在性定理;(3)数形结合法,画出相应函数图像,观察与x轴交点来判断,或转化为两个函数的图像在所给区间上是否有交点来判断1.函数f(x)ln x的零点所在的区间为()A(0,1)B(1,2)C(2,3)D(3,4)B由题意知函数f(x)是增函数,因为f(1)0,f(2)ln 2ln 2ln 0,所以函数f(x)的零点所在的区间是(1,2)故选B.2若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c)内B(,a)和(a,b)内C(b,c)和(c,)内D(,a)和(c,)内Aabc,f(a)(ab)(ac)0,f(b)(bc)(ba)0,f(c)(ca)(cb)0,由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.3已知函数f(x)ln x2x6的零点在(kZ)内,那么k_.5f(x)20,x(0,),f(x)在x(0,)上单调递增,且fln 10,f(3)ln 30,f(x)的零点在内,则整数k5.(1)f(a)f(b)0是连续函数yf(x)在闭区间a,b上有零点的充分不必要条件(2)若函数f(x)在a,b上是单调函数,且f(x)的图像连续不断,则f(a)f(b)0函数f(x)在区间a,b上只有一个零点考点2函数零点个数的判断求函数零点个数的基本解法(1)直接法,令f(x)0,在定义域范围内有多少个解则有多少个零点;(2)定理法,利用定理时往往还要结合函数的单调性、奇偶性等;(3)图像法,一般是把函数分拆为两个简单函数,依据两函数图像的交点个数得出函数的零点个数(1)(2019全国卷)函数f(x)2sin xsin 2x在0,2的零点个数为()A2B3C4D5(2)函数f(x)的零点个数为()A0B1C2D3(3)设函数f(x)是定义在R上的奇函数,当x0时,f(x)exx3,则f(x)的零点个数为()A1B2C3D4(1)B(2)D(3)C(1)由f(x)2sin xsin 2x2sin x2sin xcos x2sin x(1cos x)0得sin x0或cos x1,xk,kZ,又x0,2,x0,2,即零点有3个,故选B.(2)依题意,在考虑x0时可以画出函数yln x与yx22x的图像(如图),可知两个函数的图像有两个交点,当x0时,函数f(x)2x1与x轴只有一个交点,综上,函数f(x)有3个零点故选D.(3)因为函数f(x)是定义域为R的奇函数,所以f(0)0,即x0是函数f(x)的1个零点当x0时,令f(x)exx30,则exx3,分别画出函数yex和yx3的图像,如图所示,两函数图像有1个交点,所以函数f(x)有1个零点根据对称性知,当x0时,函数f(x)也有1个零点综上所述,f(x)的零点个数为3.(1)利用函数的零点存在性定理时,不仅要求函数的图像在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图像与性质(如单调性、奇偶性)才能确定函数有多少个零点(2)图像法求函数零点个数的关键是正确画出函数的图像在画函数的图像时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制1.函数f(x)2x|log0.5 x|1的零点个数为()A1B2C3D4B令f(x)2x|log0.5x|10,可得|log0.5x|.设g(x)|log0.5x|,h(x).在同一坐标系下分别画出函数g(x),h(x)的图像,可以发现两个函数图像一定有2个交点,因此函数f(x)有2个零点故选B.2已知函数f(x)若f(0)2,f(1)1,则函数g(x)f(x)x的零点个数为_3依题意得由此解得由g(x)0得f(x)x0,该方程等价于或解得x2,解得x1或x2.因此,函数g(x)f(x)x的零点个数为3.考点3函数零点的应用根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图像,然后数形结合求解根据函数零点个数求参数已知函数f(x)|x23x|,xR,若方程f(x)a|x1|0恰有4个互异的实数根,则实数a的取值范围是_(0,1)(9,)设y1f(x)|x23x|,y2a|x1|,在同一直角坐标系中作出y1|x23x|,y2a|x1|的图像如图所示由图可知f(x)a|x1|0有4个互异的实数根等价于y1|x23x|与y2a|x1|的图像有4个不同的交点且4个交点的横坐标都小于1,所以 有两组不同解,消去y得x2(3a)xa0有两个不等实根,所以(3a)24a0,即a210a90,解得a1或a9.又由图像得a0,0a1或a9.由函数的零点个数求参数的值或范围的策略已知函数的零点个数,一般利用数形结合思想转化为两个函数图像的交点个数,这时图形一定要准确,这种数形结合的方法能够帮助我们直观解题根据函数有无零点求参数已知函数f(x)则使函数g(x)f(x)xm有零点的实数m的取值范围是_(,0(1,)函数g(x)f(x)xm的零点就是方程f(x)xm的根,画出h(x)f(x)x的大致图像(图略)观察它与直线ym的交点,得知当m0或m1时,有交点,即函数g(x)f(x)xm有零点函数有无零点问题函数图像与x轴有无公共点问题根据零点的范围求参数若函数f(x)(m2)x2mx(2m1)的两个零点分别在区间(1,0)和区间(1,2)内,则m的取值范围是_依题意,结合函数f(x)的图像分析可知m需满足即解得m.此类问题多转化为讨论区间端点处函数值的符号求解1.函数f(x)2xa的一个零点在区间(1,2)内,则实数a的取值范围是()A(1,3)B(1,2) C(0,3)D(0,2)C因为f(x)在(0,)上是增函数,则由题意得f(1)f(2)(0a)(3a)0,解得0a3,故选C.2已知函数f(x)若关于x的方程f(x)k有三个不同的实根,则实数k的取值范围是_(1,0)关于x的方程f(x)k有三个不同的实根,等价于函数y1f(x)与函数y2k的图像有三个不同的交点,作出函数的图像如图所示,由图可知实数k的取值范围是(1,0)- 7 -
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!