数字信号处理综合报告-数字音频信号的分析与处理

上传人:hao****an 文档编号:100734093 上传时间:2022-06-03 格式:DOC 页数:14 大小:213KB
返回 下载 相关 举报
数字信号处理综合报告-数字音频信号的分析与处理_第1页
第1页 / 共14页
数字信号处理综合报告-数字音频信号的分析与处理_第2页
第2页 / 共14页
数字信号处理综合报告-数字音频信号的分析与处理_第3页
第3页 / 共14页
点击查看更多>>
资源描述
数字信号处理实验题 目 数字音频信号的分析与处理 班 级 姓 名 学 号 日 期 2013.06.10-2013.06.24 一、实验目的1复习巩固数字信号处理的基本理论;2利用所学知识研究并设计工程应用方案。二、实验原理数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。分频器即为其中一种音频工程中常用的设备。人耳能听到的声音频率范围为20Hz20000Hz,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。下图是一个二分频的示例。分频器低频放大器高频放大器声音输入High-passLow-pass 图8.1 二分频示意图高通滤波器和低通滤波器可以是FIR或IIR类型,其中FIR易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR阶数低,但易出现相位失真及稳定性问题。对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示:图8.2 分频器幅度特性由于IIR的延时短,因此目前工程中大量应用的还是Butterworth、Bessel、Linkwitz-Riley三种IIR滤波器。其幅频特性如图8.3所示:图8.3 三种常用IIR分频器的幅度特性巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用MATLAB函数很方便的计算得到,但Bessel、Linkwitz-Riley数字滤波器均无现成的Matlab函数。并联系统的系统函数为级联系统的系统函数为宁可瑞滤波器(Linkwitz-Riley),由两个巴特沃斯滤波器级联而成。N阶巴特沃夫滤波器等效宁可瑞滤波器的设计B(z)/A(z)(N/2阶)B(z)/A(z)(N/2阶)x(n)y(n)为了使设计的IIR滤波器方便在DSP上实现,常将滤波器转换为二阶节级联的形式。设计好分频器后,为验证分频后的信号是否正确,可用白噪声信号作为输入信号,然后对分频后的信号进行频谱分析。三、仪器设备1.硬件:计算机一台,耳机。2.软件:MATLAB R2010b 四、实验步骤任意选择两种类型的IIR数字滤波器,设计一个二分频的数字分频器,已知系统的采样率为48000Hz。(1)分频点为2000Hz;(2)要求给出类似图8.3的幅频特性图,分频器的幅频响应平坦,在分频点处最多不能超过3dB的偏差;(3)滤波器必须是二阶节形式;(4)给出相位特性图;(5)用频谱分析的方法验证设计好的分频器;(6)对选用的两种类型的滤波器效果进行对比。滤波器设计的基本步骤:根据分频点要求初始化参数(截止频率、滤波器阶数N)调用MATLAB函数设计滤波器(如B,A = butter(N,wc))评估滤波器性能(magH,w=freqz(B,A))五、数据记录我选择要设计的合成滤波器为ButterWorth IIR滤波器和Linkwitz-Riley IIR滤波器。1.设计程序设计程序如下:(以4阶巴特沃斯滤波器、宁可瑞滤波器设计的分频器程序为例(分频器阶数为8阶)%设计分频器clear;clc;fs = 48000;%采样频率为48000Hzfc = 2000;%分频点为2000Hzwc = 2 * fc / fs;N = 4; %滤波器阶数,分频器阶数为2*NBL,AL = butter(N,wc); %计算巴特沃思低通滤波器系统函数B,A系数BH,AH = butter(N,wc,high); %计算巴特沃思高通滤波器系统函数B,A系数magHH,w=freqz(BH,AH);%计算巴特沃思高通滤波器幅频特性magHH=20*log10(abs(magHH);f=w*fs/(2*pi);%把数字频率w转换为模拟频率fBL1,AL1 = butter(N/2,wc);BH1,AH1 = butter(N/2,wc,high); BL1=conv(BL1,BL1); %计算宁可瑞低通滤波器系统函数B,A系数AL1 = conv(AL1,AL1);BH1=conv(BH1,BH1);%计算宁可瑞高通滤波器系统函数B,A系数AH1 = conv(AH1,AH1);magHH1,w1=freqz(BH1,AH1);%计算宁可瑞高通滤波器幅频特性magHH1=20*log10(abs(magHH1);f1=w1*fs/(2*pi);semilogx(f,magHH,-.r,f1,magHH1,b);hold on;magHL,w=freqz(BL,AL);%计算巴特沃思低通滤波器幅频特性magHL=20*log10(abs(magHL);f=w*fs/(2*pi);magHL1,w1=freqz(BL1,AL1);%计算宁可瑞低通滤波器幅频特性magHL1=20*log10(abs(magHL1);f1=w1*fs/(2*pi);semilogx(f,magHL,-.r,f1,magHL1,b);hold on;B=conv(BL,AH)+conv(BH,AL); %计算巴特沃思滤波器并联系统的系统函数A=conv(AL,AH);magH,w=freqz(B,A); %计算巴特沃思滤波器并联系统幅频特性magH=20*log10(abs(magH);f=w*fs/(2*pi);B1=conv(BL1,AH1)+conv(BH1,AL1); %计算宁可瑞滤波器并联系统的系统函数A1=conv(AL1,AH1);magH1,w1=freqz(B1,A1); %计算宁可瑞滤波器并联系统幅频特性magH1=20*log10(abs(magH1);f1=w1*fs/(2*pi);semilogx(f,magH,-.r,f1,magH1,b);legend(巴特沃斯滤波器,宁可瑞滤波器);title(IIR分频器的幅度特性);axis(100 20000 -40 10);hold ongrid on%分析巴特沃斯滤波器及其设计的分频器的幅频特性、零极点分布%巴特沃斯低通subplot(2,2,1);zplane(BL,AL);title(巴特沃斯低通滤波器的零极点分布)HL,wL=freqz(BL,AL);subplot(2,2,2);plot(wL/pi,abs(HL);title(巴特沃斯低通滤波器的幅度特性)xlabel(omega/pi);ylabel(|H(ejomega)|);subplot(2,2,4);plot(wL/pi,angle(HL);xlabel(omega/pi);ylabel(phi(omega);title(巴特沃斯低通滤波器的相频特性)%巴特沃斯高通subplot(2,2,1);zplane(BH,AH);title(巴特沃斯高通滤波器的零极点分布)HH,wH=freqz(BH,AH);subplot(2,2,2);plot(wH/pi,abs(HH);title(巴特沃斯高通滤波器的幅度特性)xlabel(omega/pi);ylabel(|H(ejomega)|);subplot(2,2,4);plot(wH/pi,angle(HH);xlabel(omega/pi);ylabel(phi(omega);title(巴特沃斯高通滤波器的相频特性)%设计的分频器subplot(2,2,1);zplane(B,A);title(分频器的零极点分布)H,w=freqz(B,A);subplot(2,2,2);plot(w/pi,abs(H);xlabel(omega/pi);ylabel(|H(ejomega)|);title(分频器的幅度特性)subplot(2,2,4);plot(w/pi,angle(H);xlabel(omega/pi);ylabel(phi(omega);title(分频器的相频特性)%分析宁可瑞滤波器及其设计的分频器的幅频特性、零极点分布%宁可瑞低通subplot(2,2,1);zplane(BL1,AL1);title(宁可瑞低通滤波器的零极点分布)HL1,wL1=freqz(BL1,AL1);subplot(2,2,2);plot(wL1/pi,abs(HL1);title(宁可瑞低通滤波器的幅度特性)xlabel(omega/pi);ylabel(|H(ejomega)|);subplot(2,2,4);plot(wL1/pi,angle(HL);xlabel(omega/pi);ylabel(phi(omega);title(宁可瑞低通滤波器的相频特性)%宁可瑞高通subplot(2,2,1);zplane(BH1,AH1);title(宁可瑞高通滤波器的零极点分布)HH1,wH1=freqz(BH1,AH1);subplot(2,2,2);plot(wH1/pi,abs(HH1);title(宁可瑞高通滤波器的幅度特性)xlabel(omega/pi);ylabel(|H(ejomega)|);subplot(2,2,4);plot(wH1/pi,angle(HH1);xlabel(omega/pi);ylabel(phi(omega);title(宁可瑞高通滤波器的相频特性)%设计的分频器subplot(2,2,1);zplane(B1,A1);title(分频器的零极点分布)H1,w1=freqz(B1,A1);subplot(2,2,2);plot(w1/pi,abs(H1);xlabel(omega/pi);ylabel(|H(ejomega)|);title(分频器的幅度特性)subplot(2,2,4);plot(w1/pi,angle(H);xlabel(omega/pi);ylabel(phi(omega);title(分频器的相频特性)%滤波效果验证%巴特沃斯设计的分频器滤波效果hB,g=tf2sos(B,A) %调用函数tf2sos,将巴特沃斯滤波器设计的分频器转换成二阶节形式xB,fs,bits=wavread(E:white.wav);X=fft(xB,1024);for i=1:size(hB)xB=filter(hB(i,1:3),hB(i,4:6),xB);%二阶节级联形式对白噪声进行滤波处理endwavwrite(xB,fs,bits,e:巴特沃斯设计的分频器滤波后信号.wav)%将滤波后的噪声保存 YB=fft(xB,1024);k=0:1023;N=1024;wk=2*k/N;subplot(211);plot(wk,abs(X);xlabel(omega/pi); title(原始白噪声信号频谱)subplot(212);plot(wk,abs(YB);xlabel(omega/pi);title(巴特沃斯设计的分频器滤波后信号频谱)%hL,gL=tf2sos(B1,A1) %调用函数tf2sos,将宁可瑞滤波器设计的分频器转换成二阶节形式xL,fs,bits=wavread(E:white.wav);X=fft(xL,1024);for i=1:size(hL)xL=filter(hL(i,1:3),hL(i,4:6),xL); %二阶节级联形式对白噪声进行滤波处理endwavwrite(xL,fs,bits,e:宁可瑞设计的分频器滤波后信号.wav)%将滤波后的噪声保存 YL=fft(xL,1024);k=0:1023;N=1024;wk=2*k/N;subplot(211);plot(wk,abs(X);xlabel(omega/pi); title(原始白噪声信号频谱)subplot(212);plot(wk,abs(YL);xlabel(omega/pi);title(宁可瑞设计的分频器滤波后信号频谱)%2.图形记录figure1两种滤波器设计的分频器的幅度特性曲线:figure2巴特沃思低通滤波器的零极点分布和幅频特性:figure3巴特沃思高通滤波器的零极点分布和幅频特性:figure4巴特沃思滤波器设计的分频器的零极点分布和幅频特性:figure5宁可瑞低通滤波器的零极点分布和幅频特性:figure6宁可瑞高通滤波器的零极点分布和幅频特性:figure7宁可瑞滤波器设计的分频器的零极点分布和幅频特性:figure8巴特沃思滤波器设计的分频器的滤波效果的频谱分析:figure9宁可瑞滤波器设计的分频器的滤波效果的频谱分析:figure10将白噪声音频文件通过分频器处理后保存为wav文件:3.数据记录hB,g=tf2sos(B,A) %将巴特沃斯滤波器设计的分频器转换成二阶节形式得到数据:hL,gL=tf2sos(B1,A1) %将宁可瑞滤波器设计的分频器转换成二阶节形式得到数据:六、实验结果讨论1.对巴特沃思滤波器设计的分频器及滤波效果进行讨论根据调用tf2sos函数得到的数据可以得出二阶节级联形式的分频器的系统函数: 从figure1分频器的幅度特性曲线可以看出巴特沃思滤波器设计的分频器整体较为平整,高低通并联而成的分频器系统在分频点2000hz的地方有3dB左右的偏差。粗略可以看出设计的数字分频器满足设计要求;而从figure2到figure4这三幅零极点分布和幅频特性图可以看出巴特沃思高低通滤波器和分频器的极点都在单位圆内,所以设计的分频器系统是稳定的,分频器的幅度比较平缓,在约0.1的地方有提升;将figure10中巴特沃思滤波器设计的分频器处理后生成的wav文件打开,和原白噪声wav文件进行对比,听觉上未发现有差别,基本一致;将该分频器处理后的效果进行频谱分析,如figure8所示,可以看到处理得到的频谱在0.1左右的地方与原来的有所差别,可以与figure4显示的分频器在该处的幅值达到1.4(大约3dB的偏差)相符合,设计结果在可接受范围内。2.对宁可瑞滤波器设计的分频器及滤波效果进行讨论根据调用tf2sos函数得到的数据可以得出二阶节级联形式的分频器的系统函数: 从figure1分频器的幅度特性曲线可以看出宁可瑞滤波器设计的分频器幅度特性曲线很平坦,高低通并联而成的分频器系统在分频点2000hz的地方幅度也基本没有偏差,满足设计要求;而从figure5到figure7这三幅零极点分布和幅频特性图可以看出宁可瑞高低通滤波器和分频器的极点都在单位圆内,所以设计的分频器系统是稳定的,分频器的幅度比较平缓,在约0.1的地方(分频点)有小波动,不过稳定保持在1;将figure10中宁可瑞滤波器设计的分频器处理后生成的wav文件打开,和原白噪声wav文件进行对比,听觉上未发现有差别,基本一致;将该分频器处理后的效果进行频谱分析,如figure9所示,可以看到处理得到的频谱基本跟原音频的频谱图一致,符合设计要求。七、结论: 本实验设计内容是二分频的数字分频器,输入信号的低通和高通分量通过设计的并联系统分两路输出,实际中常采用分频器将音频信号进行处理,将高频部分输出在小音箱,低频部分输出在大音箱。而实验中设计的较为理想的分频器相当于全通滤波器,通过分频器处理得到的wav音频文件已经将低频高频部分叠加在一起,所以处理后的效果应该与原信号一致。根据实验结果可以得出结论:设计的二分频数字分频器符合设计要求,实现的分频效果较好。而宁可瑞滤波器设计的分频器的效果比巴特沃思滤波器设计的分频器的效果要好,基本实现信号的全通,与原信号基本一致。八、参考文献1高西全、丁玉美、阔永红 数字信号处理原理、实现与应用(第2版) 电子工业出版社 2012年5月2董长虹、高成、金涛 Matlab信号处理与应用 国防工业出版社 20053张志涌、杨祖樱 MATLAB教程 北京航空航天大学出版社 2011年7月
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 工作总结


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!