纳他霉素概述

上传人:微*** 文档编号:100353054 上传时间:2022-06-02 格式:DOCX 页数:25 大小:94.86KB
返回 下载 相关 举报
纳他霉素概述_第1页
第1页 / 共25页
纳他霉素概述_第2页
第2页 / 共25页
纳他霉素概述_第3页
第3页 / 共25页
点击查看更多>>
资源描述
第一章 纳他霉素纳他霉素早在1955年被Struyk等人发现,他们从南非纳他州的土壤中分离到的纳塔尔链霉菌(Streptomyces natalensis )培养液中分离出了一种新的抗真菌物质,当时称为 Pimaricin (匹马菌素);4年后美国人Burns 等从土壤中分离到了一株恰塔努加链霉菌 Streptomyces chattanoogensis , 并从其培养物中分离到了 Tennecetin (田纳西菌素)。此后的研究证明匹马 菌素和田纳西菌素为同一物质,并被世界卫生组织 WH金一命名为纳他霉素(Natamycin)。第一节纳他霉素的性质呈全构,团,一、纳他霉素的分子结构纳他霉素为四烯大环内酯,四烯系统顺式,内酯环上 G C3部位为半缩醛结 含有一个由糖昔键连接的碳水化合物基 即氨基二脱氧甘露糖(Mycosamine。其 结构式如图1-1所示。纳他霉素是两性物质,分子中含有一个碱性基团和一 个酸性基团,其电离常数pKa值分别为和,等电点为,熔点为 280C o纳他 霉素存在两种构型:烯醇式和酮式,这就使得其难溶于多种溶剂。图1-1纳他霉素的分子结构二、纳他霉素的理化性质纳他霉素是一种多烯大环内酯类抗真 质,呈白色或乳白色结晶粉末,含 3个结晶水,几乎无臭无味。分子式为 C33H7NQ,分子量为。纳他霉素的紫外光谱如图 1-2所显示,分别在290nmi 303nmi 318门也有强吸收峰,280门碗有峰肩,220nm处有宽峰。由于纳他 霉素含有四烯环,因此在 280320nm之间出现吸收峰,而在 220nm的最大 吸收是由于纳他霉素含有发色团。纳他霉素的四烯发色团给分子一种高不饱 和特性,可与澳和含活性氧的化合物如高镒酸钾、高硫酸盐及过氧化物相互 作用;另一方面,它以环氧族形式保持弱氧化性,纳他霉素在冰醋酸中用热 的碘化物处理后会析出碘。纳他霉素酸解可以释放出海藻糖氨,内酯可以通 过 图1-2纳他霉素的紫外光谱碱水解作用皂化。纳他霉素在水中或低级醇中的溶解性随着pH的降低或升高而增加,中性时溶解度最低,而在pH低于3或高于9时溶解度增大。纳他霉素在各种常见溶剂中的溶解度如表1-1所示。表1-1纳他霉素的溶解度溶剂溶解度水乙醇乙醇80%水20% 甲醇丙二醇甘油 二甲基亚碉 冰醋酸纳他霉素干粉在避光避潮下较稳定, 室温下保存几年只有很小一部分失 活。其三水合物同样稳定,但其无水形式不稳定,在室温封闭的瓶子中保存48 小时失去15%的活性。中性的纳他霉素水溶液几乎和干粉一样稳定。纳他霉素的稳定性受pH值、温度、光照、氧化剂和重金属等条件的影响。纳他霉素在9之间非常稳定,在极端pH值下纳他霉素迅速失活,形成 不同的分解产物。低pH值时其主要的裂解产物是海藻糖胺;高 pH值时,如 pH12,由于内酯皂化可形成纳他霉酸,用强碱处理导致进一步分解,产生一 系列的后醛醇反应。pH对纳他霉素的抗真菌活性没有明显的影响。纳他霉素在pH57的范围内,30 c储存三周,其活性仍保持100%时保才等大约85% 时大约为75%但在大部分食品所在的pH范围内,纳他霉素十分稳定。纳他霉素的稳定性好,50放置几天或100短时处理,其活性几乎无损失。120c条件下加热不超过1h仍能保持部分活性。纳他霉素在紫外光下分解,失去四烯结构。丫辐射也能使纳他霉素分解。纳他霉素不宜与氧化剂如过氧化氢、漂白粉等接触,否则抑菌活性会明显下降。一些金属离子可以促进纳他霉纳的氧化失活,尤其是铁、镍、铅、汞等重金属。因此,纳他霉纳适宜存放在玻璃、塑料或不锈钢容器中,也可以添加EDTAlg聚磷酸盐来防止失活。第二节 纳他霉纳的生理功能和毒理性一、纳他霉纳的抑菌功能纳他霉纳是一种广谱抗生纳,对霉菌、酵母菌、某些原生动物和某些藻类有抑制作用(表12),但对细菌没有抑制。纳他霉纳的抑菌机理一般认为是:真菌的细胞膜含有麦角固醇,而细菌细胞膜中不含这种物质,多烯大环内酯类抗生素能有选择的和固醇结合,结合的程度与膜的固醇含量成正 比,结合后形成膜-多烯化合物,引起细胞膜结构的改变,导致细胞膜渗透 性的改变,造成细胞内物质的泄漏。纳他霉素对于抑制正在繁殖的活细胞效 果很好,而对于休眠细胞则需要较高的浓度。纳他霉素对真菌抱子也有一定 的抑制效果。有人测试过纳他霉素对 500种霉菌的抗性,所有菌种都被1- 10mg/L的纳他霉素抑制。Klis比较了纳他霉素、山梨酸、放线菌酮、制霉 菌素、龟裂霉素等的抑菌效果,发现纳他霉素对16种在肉汤和琼脂中培养的霉菌是最有效的抑制剂,绝大多数霉菌在 6mg/L的纳他霉素浓度下被抑 制,极个别霉菌在1025mg/L的纳他霉素浓度下被抑制,L的纳他霉素能 抑制多数酵母。表1-2纳他霉素对常见微生物的抑制作用微生物名称MIC (mg/L)梨头霉菌 链格抱菌 黑曲霉 灰质葡萄抱菌 镰刀菌 蜂毛霉菌 乳念珠菌指状青霉菌膨大青霉菌青霉菌根霉菌 细小红色根隐球菌啤酒酿酒酵母菌镰刀麦角菌红色凸抱子菌伯克力抱子酿酒酵母酒香酵母菌白色念珠菌吉利蒙氏念珠菌维尼氏念珠菌多形汉逊氏酵母菌针峰状克勒克氏酵母菌贝尔氏酿酒酵母菌拜也努氏酿酒酵母菌啤酒酿酒酵母菌(8021) 啤酒酿酒酵母椭圆形变种 少抱酿酒酵母路德维希氏酿酒酵母菌鲁氏酿酒酵母菌萨克氏酿酒酵母菌念珠样串酵母菌 凝聚孔串酵母菌二、纳他霉素的毒理性纳他霉素无毒, 并且不致突变、 不致癌、 不致畸、 不致敏。 人体口服 500mg纳他霉素后, 在血液中的含量少于1mg/mL, 即说明纳他霉素很难被动物或人体的肠胃吸收。有研究表明,奶牛食入的高剂量的纳他霉素,约90%经粪便排出。急性和慢性毒性试验证明,纳他霉素对人体器官没有明显影响,不产生伤害。Hamilton报道纳他霉素口服毒性最小,静脉注射毒性极大。De等人研究了真菌对纳他霉素形成抗性的可能性, 在连续几年使用纳他霉素的食品仓库中,没有发现真菌形成抗性的证据,使用大于MIC(最低有效抑制浓度)的纳他霉素量,人为诱导也没有发现真菌形成抗性的证据。 Ray 等人报道纳他霉素能减少黄曲霉产生的黄曲毒素、赭曲霉产生的赭曲毒素、圆弧青霉产生的青霉酸、展开青霉产生的展开青霉素。经卫生学调查和皮肤斑点试验,表明纳他霉素无过敏性反应。经降解处理后的纳他霉素在急性毒理、短期毒性实验中均无对动物的损害。耐药性的研究表明,未见有霉菌和酵母对纳他霉素有异常的耐药性。美国FDA建议纳他霉素作为食品添加剂使用的抗生素,还被归类为GRAS产品之列。我国于 1996 年由食品添加剂委员会对纳他霉素进行评价并建议批准使用,现已列入食品添加剂使用标准,其商品名称为霉克(NatamaxinTM)。美国CF颜码:,其中对纳他霉素的 DAI值是kg,根据我 国食品添加剂使用卫生标准(GB2760规定,食物中最大残留量是10mg/kg, 而纳他霉素在实际应用中的使用量为微克级。第三节 纳他霉素发酵的国内外发展动向早在 1960 年已有发酵生产纳他霉素的报道。但直到 20 世纪九十年代,纳他霉素的生产研究才重新受到关注。期间,关于纳他霉素发酵与提取等方 面都有了深入的研究。目前,国外对纳他霉素产生菌基因工程方面的研究已 经起步。1999年Aparicio等人研究了纳他霉素产生菌纳塔尔链霉菌的生物 合成基因簇,染色体组包含110Kb碱基对。他们还报道了由功能基因分隔的 两个亚簇编码的聚酮合酶基因组,包含两个主要的基因pimSO和pimSI,pimSO编码一个相对较小的乙酸激活聚酮合酶(PKS基因(大约193kD0), pimSI编码一个巨大的多酶基因(大约 710kDa)。2000年Aparicio等人报道了纳塔尔链霉菌的一个含 16个开放读码框(表 1-3), 84985bp基因簇的序列,它是继制霉菌素后报道的第二个多烯大环生 物合成基因簇,它编码聚酮合酶(PK0的13个同源酶基因,PKSa分配在 五个巨大的多酶系统中(PIMS0-PIMS4。同年,Marta等人又研究报道了纳 塔尔链霉菌中的一个隐蔽质粒 pSNA1的基因图谱和全部核甘酸序列,DNA十 子大小9367bp, G+C的含量占外拷贝数30。pSNA1包含七个开放阅读框, 分别编码不同的蛋白质。2001年,Marta等人报道了从纳塔尔链霉菌中获得的目的基因片段pimD,它编码细胞色素P450环氧酶,负责将4,5-去环氧匹马霉素(4,5-de-epoxypimaricin )转变成匹马霉素。4,5-去环氧匹马霉素是一种 生物活性物质,是从纳他霉素产生菌纳塔尔链霉菌的一个重组突变体中分离 得到的。表1-3纳他霉素生物合成基因簇ORFsR结构域ORFs 多肽 氨基结构域pimS0 PIMS0 1847 PKSpimS1pimS2pimS3pimS4loading组件 0PIMS1 6797组件 1组件 2组件 3组件 4PIMS2 9507组件 5组件 6组件 7组件 8组件 9组件10PIMS3 1808组件11PIMS4 2024组件ColKS* AtaPKSKS AtaKS AtaKS AtaKS AtaPKSKS AtaKS AtaKS AtbKS AtaKS AtaKS AtaPKSKS AtaPKSKS AtaACPKR ACPDH KR ACPDH KR ACPDH KR ACPDH KR ACPKR ACPKR ACPKR ACPKR* ACPKR ACPDH KR ACPDH KR ACPpimAPimA602转运ABCpimBPimB626转运ABCpimCPimC352氨基转移酶pimDPimD397细胞色素P-450单氧化酶pimEPimE549胆固醇氧化酶pimFPimF63铁氧还蛋白pimGPimG398细胞色素P-450单氧化酶pimHPimH432流量泵pimlPiml255硫酯酶pimJPimJ343糖脱氢酶pimKPimK458糖基转移酶12TE第二章纳他霉素的发酵生产耳蚊工范 H I.,一姆*:睾惶合成体的A)、途所调控第一节纳他霉素的生物合成途径多烯大环内酯抗生素的生物途径可以分为三个步骤:活化前生成(乙酰辅酶A和丙二酰辅酶内酯大环的生物合成(多聚乙酰径)和氨基糖的形成。如图 1-3示。由于纳他霉素生物合成代谢 以及前体物质在其合成中的作用方面的报道甚少,因此,已有的报道更多的是基于多烯大环内酯抗生素生物合成途径来进行代谢调控。第二节 纳他霉素发酵及菌种选育一、纳他霉素发酵微生物 图 1-3 多烯大环内酯抗生素的生物合成途径纳他霉素产生菌为链霉菌 , 链霉菌的基内菌丝通常发育良好, 多分枝、无隔膜而连贯,气生菌丝茁壮,较基内菌丝粗,颜色较深 , 当菌丝逐步成熟时, 大部分气生菌丝分化成孢子丝, 产生呈长链的孢子,孢子被外鞘所包,鞘表面平滑或带各种装饰物 , 在电子显微镜下表现为双短杆镶嵌状, 有鳞片或形状和大小不同的突起、刺或毛发等;孢子的分裂方式也有差异,有的沿横膈中央平切,有的两端浑圆,由残余的鞘相连。目前,报道的纳他霉素生产菌有三种:1 、恰塔努加链霉菌 Streptomyces chattanovgensis , ATCC 13358, 其形态特征为孢子丝圈至螺旋形,有时柔曲;孢子呈球形或椭圆形,表面带细刺。2、纳塔尔链霉菌 Streptomyces natalensis , ISP 5357 , 其形态特征为抱子丝25圈松敞螺旋形;抱子呈球形或卵圆形,表面带小刺。3、褐黄孢链霉菌 Streptomyces gilvosporeus , ATCC 13326, 其形态特征为孢子丝螺旋形;孢子呈球形或卵圆形,孢子表面带刺。二、纳他霉素发酵菌种选育1、菌种筛选与诱变链霉菌可产生大多数已知的抗生素、动物生长促进剂等生物活性物质。由于链霉菌的抗生素生物合成基因趋于成簇排列, 共同控制链霉菌的抗生素 生物合成,因而利用基因技术很难将全部抗生素生物合成基因克隆表达出 来。采用传统的育种方法,即利用各种理化因子对链霉菌进行诱发突变,可以使其抗生素产量得到提高。但由于诱变所产生的突变是随机的,并且突变频率低,只有10-310-6,在突变株中,多数为负向变异,生产需用的正变株的突变频率更低。由于基因突变是不定向的,如果盲目上摇瓶进行经验式筛选,必然导致目标菌株筛选工作量大,直接影响了诱变育种的效率。因此,在诱变完成后,如何定向筛选出正向突变株则是一项更重要的工作。纳他霉素产生菌链霉菌的产抗生素能力与链霉素抗性基因之间的对应关系是目前抗生素科研领域的一个热点。 Ochi 等人从多种链霉菌中获得rel突变株, rel 突变株的共同特点是其产抗生素能力消失,并且菌体内积累鸟甘四磷酸(ppGpD的能力明显下降。而在同种链霉菌的正常菌株中菌体形 态分化和产抗生素的开始往往伴随ppGpp的激增。这表明ppGpp是次级代谢起始的优势信号因子,对抗生素生产的启动具有重要作用。1996 年, Shima 等人通过抗性突变使原本不产放线菌紫素的产生放线菌紫素。DNAM序显示该链霉素抗性突变株中编码核糖体蛋白S12的rpsL基因中 Lys-88 突变为 Glu 。 进一步实验表明这种链霉素抗性基因突变可以使rel突变株恢复抗生素的生产,而没有伴随ppGpp的积累。这些研究证明链霉素抗性突变株能够在无需ppGpp的情况下,经过一个尚不明确的途径最终恢复 次级代谢产物的生产。1997 年, Hesketh 等人提出了一种提高生产放线菌紫素的育种新方法。该方法利用链霉素抗性突变作为筛选手段进行诱变育种, 极大的提高了工作 效率。 2001 年, Haifeng 等人发现庆大霉素和利福平都可以代替链霉素作为抗性筛选条件,并获得同样的实验结果。这些研究使这一方法具有了普遍性意义。2、菌种保藏与分离复壮对于生产纳他霉素的放线菌来说, 可以采用定期移植保藏法或冷冻真空干燥保藏法,这两种方法操作简便,效果较好。定期移植保藏法一般使用高氏培养基、 马铃薯葡萄糖琼脂培养基或察氏琼脂培养基等, 培养温度28左右,保藏温度4c6 C,保藏湿度在50%- 70刈下为宜。每三个月移植一次。如果采用冷冻真空干燥保藏法,冻干的菌株能在更长的时间内保持着生命力,并能相对减少经常移植引起的变异。只不过冻干保藏法要求操作技术比较熟练。冷冻真空干燥保藏法保藏的菌株可在室温存放,也可在低温(4C10C)存放,但温度应保持恒定,而且要避光。冻干的菌种经贮藏后,需用时可在无菌室内开启安培管进行恢复培养。其步骤如下: 先用锉刀将安培上部横锉一道痕迹, 用烧热的玻璃棒置痕迹处,安培壁上立即出现裂纹,当空气进入后再行打开,用无菌吸管将液体培养基如营养肉汁、麦牙汁加入安培管中,溶化干燥的样品,摇匀,再用无菌吸管吸取溶化的液体并移入适宜的培养基上,在最适温度下培养。第三节 纳他霉素发酵工艺一、发酵碳源、氮源及营养条件纳他霉素发酵所采用的原材料主要为大豆蛋白抽提物,酵母抽提物,葡萄糖,原料的质量标准为通用发酵用标准,实验表明,原材料的产地和质量对发酵有较大影响,原材料的确定除了其他化验指标外,摇瓶实验结果是极为重要的依据。有人认为用非酵母蛋白和酵母蛋白的混合物作为培养基中的氮源,可提高纳他霉素的发酵效价。研究了豆油、淀粉、木糖、糊精、甘油、乳糖、蔗 糖、菜籽油和葡萄糖等不同碳源对纳他霉素发酵的影响,结果表明葡萄糖是最适碳源,并且当葡萄糖浓度为 36.0g/L 时,纳他霉素产量最高。同时,选择大豆蛋白胨和酵母粉为复合氮源,会进一步以高纳他霉素发酵单位。优化后的培养基组成为:种子培养基( g/L ) :葡萄糖20,蛋白胨6,酵母粉6,NaCl10, 。发酵培养基( g/L) :大豆蛋白分离物20,酵母粉,葡萄糖(50葡萄糖单独灭菌) 40, 。也有研究认为仅采用能够促进菌体快速增长的葡萄糖为唯一碳源, 效果并不好,并且,随其浓度的增加会产生“葡萄糖效应” 。针对这种情况,可采用复合碳源,即采用可快速利用碳氮源加慢效碳氮源的方法。这样,有可能消除 “葡萄糖效应” 。 Eisenschink 等人报道了流加碳、 氮源进行纳他霉素发酵的过程。指出发酵培养基中至少应有15g/L 的蛋白氮源,其中碳源要不断流加,使碳源浓度保持在530g/L,纳他霉素产量可达至少5g/L。三、发酵工艺条件影响纳他霉素发酵的因素主要是温度和pH选才!了 23c 35c之间共7个温度梯度进行实验,结果表明,菌体量和纳他霉素产量在25 29温度范围内随着温度的升高而增大,29 时达到最大值。当温度高于29 时,纳他霉素随着温度升高而减小, 特别是温度高于 31后, 菌体量和纳他霉素的值都迅速下降。将初始 pH 值分别调为、 、 、 、 、 、 、 、 ,发酵 96h 测定纳他霉素产量,结果表明,当初始pH值在之间时,纳他霉素的产量最高。也有报道认为发酵过程中通过添加 NaOHg KOH Ca(OH)等,控制发酵液pH值维持 在,可以提高纳他霉素发酵效率。四、种子和接种量获得菌种后首先要进行菌种的活化,从安培管中接种一环于装有50mL液体活化培养基的250m一角并K中,29C, 200r/min振荡培养48h,转接于 保藏斜面,29恒温培养10 天左右, 待斜面完全被孢子覆盖,4保存备用。在发酵前,要先制备孢子悬浮液和进行种子培养,用适量无菌水洗下琼脂斜面上长好的孢子,将孢子悬浮液置于装有玻璃珠的三角瓶中,在振荡器上充分振荡,使抱子均匀分散,抱子浓度为 1051010CFU/mL然后取一定量 的抱子悬浮液接种于种子培养基中,29C,通风培养30h,使菌体处于对数 生长期。分别将以培养18、20、22、24、26、28、30h的种子以1%15%的不同接种量接种于发酵培养基中,发酵 96h,结果发现种龄为24h、2%接种量 的种子所产生的纳他霉素量最高。另外,研究表明,用孢子接种比用营养细胞接种的纳他霉素产量高40%。五、纳他霉素发酵Borden 和 Raghoenath 两个研究小组发现,褐黄孢链霉菌经发酵罐放大培养总发酵周期为250h, 因供氧及产物浓度等原因,搅拌速度在不同时期有所不同, 发酵初期的搅拌速度较低, 到发酵后期, 由于产物及代谢物的积累,产物的生成速率下降, 故应适当提高搅拌速度以保持发酵罐内足够的溶解氧水平;还可采取持续地抽去发酵罐中的培养液,同时,以与之相同的速率向发酵罐中添加新培养液,这样就避免有害代谢物在发酵罐中过度积累,及时补充新鲜的营养成分。另外,在发酵后期,添加的新鲜培养液各营养成分的浓度比原来的培养液都有所增加,这也有利于产物的进一步生成。发酵过程中, 培养液中各成分的浓度和类型都会影响纳他霉素的生物合成,其中碳氮比是关键因素之一,氮源促进菌体的生长繁殖,同时要在发酵 中流加补充适当的碳源 (葡萄糖) 。 在发酵前期葡萄糖的浓度为 40g/L , 到发酵后期则为20g/L ,此时菌体生长和纳他霉素的产量均达到最佳值。有资料表明,氮源的类型对菌体生长和纳他霉素的产量有较大影响,菌体细胞生长最好的氮源是酵母抽提物,而纳他霉素产生的最佳氮源是牛肉浸出物,所以将两种氮源混合使用则使纳他霉素的产量增加两倍。采用 5L 自动发酵罐进行了纳他霉素的分批发酵,确定的发酵工艺条件为初始葡萄糖浓度:40g/L;以体积比2%勺接种量接种于5L罐内;空气流速 6L/min ,起始转速200rpm,当溶氧下降至40姒下,增加转速;29 C;发酵 96h,纳他霉素的产量为2.75g/L。第三节 纳他霉素的提取和精制一、纳他霉素的提取纳他霉素的分离提取方法有很多。专利GB846933艮道了利用甲醇、丁醇和丙酮等从发酵液中提取纳他霉素的方法。 美国专利报道了用限制性水溶性有机溶剂萃取纳他霉素。也有专利报道了盐析法提取纳他霉素,包括溶剂溶解,蒸发和纳他霉素析出。另外,专利GB2106498艮道了体积浓缩法和从过滤后的发酵液中用丁醇回收纳他霉素,从中可分离纳他霉素。世界专利WO92/10580艮道了在低pH条件下用甲醇溶解纳他霉素,然后除去固形物,提高 pH 以沉淀析出纳他霉素。这些提取过程一般要求多级纯化,操作费用比较昂贵,而且纳他霉素对酸降解非常敏感,存在提取量低的缺点。1999年美国专利 5942611报道了一种有效的提取高质量纳他霉素的方法,该方法的提取过程主要包括四步:(1)用错流过滤发酵液,浓缩至发酵液浓度达到1050%(W2,浓缩过程中,可以在5070 c条件下加热发酵液以提高蒸发量和过滤速率。(2)调节发酵液的pH在1011,添加足够量的水溶性有机溶剂如乙醇、丙醇、异丙醇、丙酮、四氢呋喃等溶解发酵液中的纳他霉素。可通过加抗氧化剂如抗坏血酸、BHA BHT等来进一步提高纳他霉素的稳定性。( 3 )通过错流过滤除去没有活性的发酵不溶物。(4)调节过滤液的pH在范围内,使纳他霉素沉淀。过滤得到析出的晶体,可用于进一步纯化,干燥。通过这种方法,干燥产品纯度可达9499%(无结晶水计算),纳他霉素回收率可达4070%二、纳他霉素的精制Millis 等人开发了甲醇法精制纳他霉素, 其处理过程如下: 将甲醇加入到含有经提取的纳他霉素粗品溶液中,使温度不超过15;调节溶液pH为,除去溶液中析出的固体,并将pH调至,这时纯的纳他霉素就会析出沉淀。第五节 纳他霉素的检测一、生物检测法纳他霉素效价的生物检测法主要采用管碟法。 管碟法利用抗生素在琼脂培养基中的扩散渗透作用, 将已知浓度的标准溶液和未知浓度的样品在含有敏感性实验菌的琼脂表面进行扩散渗透, 由于对被试菌的抑制作用而产生抑菌圈,抑菌圈的大小和抗生素的浓度之间有一定的比例。这个方法利用抗生素抑制敏感菌的特点,符合临床使用的实际情况,而且灵敏度高,接近Wg/ml ,不需特殊设备,为国际公认。二、色谱分析1 .纸色谱法表1-4用Whatman传滤纸通过以下几种色谱系统进行分析,色谱斑用生物 自显影测定。溶剂系统Rf值正丁醇/水,饱和液正丁醇/乙醇/水(5:1:4 )一正丁醇/水(7:3)三乙胺/甲酰胺/水(10:3:10)上层2 .薄层色谱法表1-5用于纳他霉素的薄层色谱系统稳定相溶剂系统(表测定方法(表 Rf值1-6)1-7)硅月底 G (Merck pH8)11硅月壬G (Merck)21硅月壬G (Merck)32, 3硅月壬G (Merck)44硅月壬G (Merck)54硅月事G (Merck)62, 3硅月事 G(Merck)72,3硅月壬 G(Merck)82,3硅月G(Merck pH3)92,3硅胶 G ( Merck10560F254)硅胶 G ( Merck116,1060F254)硅月壬 GF (Analtech )127,8Polygram Sil G foil137,8(M 和 N)交联葡聚糖G-151411表1-6用于纳他霉素的薄层系统的溶剂系统1乙醇/氨/水8:1:12正醇/乙酸/水3:1:13甲醇/异丙醇/乙酸90:10:14甲醇/内酮/乙酸8:1:15乙醇/氨/二恶烷/水8:1:1:16正醇/吐匕咤/水3:2:17正醇/吐匕咤/乙酸/水15:10:3:128正醇/乙酸/水/二恶烷6:2:2:19正醇/乙酸/水2:1:110三氯甲烷/甲醇/乙酸/水6:2:2:111 三氯甲烷/甲醇/0.05M硼酸缓2:1:1较低层冲液12 正丁醇/乙酸/水4:1:5上层13 正丁醇/乙酸/水4:1:2:114 0.025M硼酸缓冲液含表1-7用于纳他霉素薄层色谱测定方法1 10犒镒酸钾/%澳酚蓝2 5嗝镒酸钾3 浓缩磷酸100 C 5min4 %P二甲基氨基苯甲醛在含微量氯化铁的浓硫酸中5 1%P二甲基氨基苯甲醛+ 20%E氯化锡醇溶液和20%(v/v%)的浓盐酸6 浓硫酸 105 C 10min7 碘蒸气8 浓硫酸/冰醋酸1:19 浓硫酸/甲醇1:210 苗三酮11 生物自显影3 .高效液相色谱(HPLC法高效液相色谱(HPLC法检测纳他霉素广泛采用。8反相柱,纳他霉素在 303nm处有最大吸收峰,所以检测器采用UV检测器,常见流动相和典型的检 测条件如表1-8和表1-9 。表1-8 HPLC法检测纳他霉素常用流动相流动相配比(V/V)甲醇:水65: 35甲醇:水:冰醋酸48: 32: 1甲醇:水:冰醋酸60: 40: 5甲醇:水:四氢吠喃44: 47: 2 (含1%勺醋酸氨)甲醇:水:磷酸55: 45: 3表1-9二种典型的纳他霉素测定的高压液相色谱系统条件一条件二仪器Spectra physics SP800色谱ShimadzuclasslOAvp 色谱检测器Schoeddel SF770j二级管阵列柱子 w bondapak C18 x 300mmC8 x 150mm流动相 甲醇:重蒸水:四氢吠喃( 440:470:20 )甲 醇:水:磷酸含 1%昔酸镂(550:450:3)流速2ml/min1ml/min测定波 303nm303nm长保留时间利用HPLC检测沙拉酱中纳他霉素含量。首先利用冰乙酸:水 (5: 40)直接提取沙拉酱中的纳他霉素,离心分离后,在高效液相色谱仪上于波长305nm处测定其含量。高效液相色谱条件:色谱柱为大连依利特科学仪器有限公司HYPERSTLBDCS18x 150mm 柱温:40; 流动相:甲醇:水:冰乙酸(60 : 40:5);流速:min;检测波长:UV305nm进样量:10 w L;峰面积定量。该方法操作简易,精密度CV=%;线性范围。10wg/mL。4 . 分光光度法Harry Brik 研究了在含有%乙酸的甲醇中纳他霉素的紫外光谱,乙酸作为波长稳定剂。纳他霉素的紫外光谱显示,在 =29R 303、318nm处有尖锐的最大吸收峰,因此紫外分光光度法可检测纳他霉素。采用紫外分光光度测定法,在303nm处可以测定纳他霉素的含量,此法称为“一点法”,但该方法不能精确定量纳他霉素的生物活性;依据在 303nm的最大吸收值,以及在 295nmDBIInm的吸收值,可以测定纳他霉素的含量,称为“基线法”,基线 吸收的公式为A303 (A295 A311)/2 。纳他霉素在强盐酸作用下瞬间显示蓝色,自身形成阳离子,这是比色法测定纳他霉素的原理。在水浴中,四个体积的甲醇(含 3090区g/ml的纳 他霉素)中加入十个体积的含 20%乙醇的盐酸,1315min后,在635nmt 测定其吸收。一定量的酸和纳他霉素的碱降解产物不会干扰测定。另外,纳他霉素在氨基苯乙酮存在下,碱水解产物形成一种红色的发色团,这种方法更灵敏,但糖和纳他霉素的碱分解产物干扰测定。纳他霉素的分析干扰因素较多,各种方法也各有优缺点。分光光度法、比色法和滴定法较为简单,但是结果不能排除干扰因素的影响,难以精确定量;微生物分析法较为直观,操作也不复杂,易于在实验室中实现;高效液相色谱法测定的结果较为精确。第三章 纳他霉素的应用一、纳他霉素使用的国内外标准WH口 FAOm定消费者每天纳他霉素最大摄入量(ADI)为kg体重,奶酪和香肠的一般消费者每天摄入量为kg体重。1998年GRA贞家组认定纳他霉素用于酸奶、奶油、干酪、酸性稀奶油和农家干酪非常安全。目前,荷兰、 比利时、法国、西班牙、意大利、瑞典等国家都允许纳他霉素用于干酪和硬 香肠的防腐,荷兰还批准纳他霉素用于苹果和梨的防腐。在中国,纳他霉素 被批准用于干酪、肉制品、月饼、糕点、果汁原浆以及易发霉食品加工器皿 的表面,一般采用200300mg/kg悬浮液浸泡或喷洒,残留量不超过10mg/kg。纳他霉素也被批准添加到发酵酒、酸奶和色拉酱中,限量为10mg/kg (食品添加剂使用卫生标准:GB2760-96, , 防腐剂) 。目前,全世界已有三十多个国家采用纳他霉素作为食品防腐剂。二、纳他霉素在食品中的应用1982年6月,美国FDAE式批准纳他霉素可用作食品防腐剂。1990年1 月 9 日, 我国卫生部食品监督厅签发了国内第一个生物食品防腐剂 Nisin( 乳 酸链球菌素或称乳链球菌肽) 的使用合格证明,到 1996 年,中国食品添加剂标准化技术委员会正式批准纳他霉素可作为食品防腐剂。 乳链球菌肽对革兰 氏阳性腐败细菌有抑制作用,对酵母菌及霉菌等丝状真菌无效;而纳他霉素 对酵母菌及霉菌等丝状真菌有极强的抑制或杀灭作用, 这一点正好与乳链球 菌肽的抑菌谱互补。纳他霉素由于溶解度低,被用作食品表面防腐剂以增加货架期,主要在奶酪、肉制品等,它不会干扰其它食品组分,也不会带来异味。它在食品中的抗真菌作用是双效的:既可防止真菌引起的食品腐败,减少经济损失;又可防止真菌毒素给人类造成的毒素型食物中毒。与传统的抗真菌剂比较,纳他霉素有其独特的性质,它在很低的浓度下仍具有活性,例如:在奶酪中纳他霉素比山梨酸钾活性高400倍。在葡萄酒中,纳他霉素能取代山梨醇和其它抗真菌剂,它允许减少所使用的SO2 量。1、干酪纳他霉素应用于奶酪生产的工艺已很成熟,有关的报道从70 年代至今多不胜举。纳他霉素用于干酪皮防止其表面发霉,它不会渗透到干酪内部,仅仅停留在酪皮外层,而这一部分一般不会被取食,干酪放置5-10 周后,纳他霉素基本消失, 此时酪皮变硬不易受到霉菌侵染, 纳他霉素对细菌无效,因而不会影响干酪和干酪制品的熟化。使用方法一般有浸泡、喷洒或乳剂覆膜。 %( w/v )的纳他霉素用于奶酪就可有效防止丝状真菌的污染。2、肉制品在肉制品中使用 2000mg/kg 的纳他霉素混悬液对其进行浸泡或喷洒, 可达到纳他霉素含量为8wg/cm2安全而有效的防霉水平。对于香肠来说,纳他霉素可在以下数个步骤中添加:发酵前;肠衣浸泡;已灌料香肠的浸泡;已灌料香肠的表面喷洒。对于硬香肠来说,纳他霉素的推荐用量为肠衣浸渍液质量的%。3、果汁纳他霉素在果汁中的应用也很广泛。对于葡萄汁,添加 20mg/kg 纳他霉素就能防止酵母发酵;橙汁在自然条件下保存一周就会受到真菌的污染,而使用 kg 低剂量的纳他霉素就可以确保橙汁的保质期达到 8 周; 对于苹果汁,30mg/kg 的纳他霉素能在6 周内防止发酵变质,并且使果汁的原有风味基本保持不变。4、茶饮料纳他霉素用于茶饮料,可以有效防止真菌腐败,保证了茶饮料可接受的感官特性。5、水果纳他霉素用于水果储存中,可有效防止真菌引起的有氧降解。将整个苹果浸泡在含有500Ppm纳他霉素的悬液中12分钟后,经过8个月的存放,能有效降低苹果变质的数目。另据报道,用卵磷脂纳他霉素混合液浸洗苹果可有效防止水果出现的霉腐斑点。6、焙烤食品已经研究过纳他霉素在各种焙烤产品中的应用。 当黑面包和白面包表面洒有 100500mg/kg 的纳他霉素混悬液时,防霉效果好。用纳他霉素对生面团进行表面处理,也收到了理想效果。7、酱油以 15mg/kg 的添加量将纳他霉素加入到酱油产品中, 其口感和颜色无变化,而且纳他霉素的加入不会出现絮状沉淀,不影响产品中可溶性固型物的含量, 产品在37下保温一个月,没有观察到白花出现, 镜检微生物指标也未见异常情况。此外,纳他霉素用于卷心菜叶的防腐,以及在草、马铃薯种子和水仙花球茎中的应用,都取得了满意的效果。纳他霉素还可用于人造奶油、果冻、酱菜和广式月饼等的防霉。三、纳他霉素在医疗中的应用由于纳他霉素具有: ( 1)非常低的口服毒性; ( 2 )没有证实通过肠道吸收; ( 3) 没有发现过敏性; ( 4) 从来没有碰到交叉抗性等优良性质。 近几年,纳他霉素用于医疗的文献越来越多。纳他霉素可以悬浮剂、乳剂、软膏和鞘状药片等制剂形式用于抗皮肤和粘液膜的真菌感染, 可以单独使用也可以与新霉素、氢化可的松及其它类固醇共同使用。纳他霉素还可用于阴道和肺部真菌感染的治疗。 有报道纳他霉素用于治疗儿童由真菌引起的皮肤和粘液膜感染非常有效。 通过 观察纳他霉素滴眼液治疗真菌性角膜溃疡的疗效, 发现用药三周后11例溃疡6mmz下者全部治愈,3例溃疡大于6mm#有2例治愈,1 例有效。但局部应用纳他霉素可以在角膜实质层内聚积达到有效浓度,但在眼内液中却达不到,因其基本不能透过角膜全层、结膜,所以用于真菌感染的早期治疗效果非常显着。四、纳他霉素在饲料中的应用目前我国市场上提供的饲料防腐剂在高温高湿条件下, 防霉的效果均不太理想,尤其在贮存后期微生物污染严重。采用天然性防腐剂纳他霉素,对霉菌抑制效果优于山梨酸等防腐剂。 纳他霉素在饲料中使用主要问题是对污染细菌无杀菌及抑菌作用,此时,可采用纳他霉素与苯甲酸钠或双乙酸钠以一定比例配合,有很好的抑菌效果。1mg/kg配方可完全抑制绿色木霉、拟青霉和桔青霉的生长; kg 配方可完全抑制产黄曲霉和黑曲霉的生长; 5mg/kg复配方可完全抑制黄曲霉和雅致枝霉的生长,因此,5mg/kg可抑制各种饲料中可寄生的的霉菌生长。 另外实验还表明使用 10mg/kg 复方配制可抑制饲料中各种细菌及霉菌的生长。五、纳他霉素在家禽养殖中的应用在家禽养殖中,根据引起疾病的原因,在使用纳他霉素作为预防和治疗家禽疾病时,使用不同剂量可以有效防止和治疗疾病的发生。另外,在环境中喷洒纳他霉素,一方面可以杀死禽舍中的真菌,另一方面,还可以使家禽吸入纳他霉素而预防和治疗家禽身体某个的感染。如果在饲料中加入X 10655X 10-6的纳他霉素就可控制和阻止真菌的侵染,使饲料在贮存过程中,不被真菌毒素污染,而且在此剂量下对家禽是无毒害作用的。一般可保护贮存物两个月或更长时间免受真菌浸染, 这也是避免家禽患真菌疾病的一种预防措施。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 营销创新


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!