高一物理力的合成与分解单元复习.doc

上传人:jian****018 文档编号:9849142 上传时间:2020-04-08 格式:DOC 页数:50 大小:568.50KB
返回 下载 相关 举报
高一物理力的合成与分解单元复习.doc_第1页
第1页 / 共50页
高一物理力的合成与分解单元复习.doc_第2页
第2页 / 共50页
高一物理力的合成与分解单元复习.doc_第3页
第3页 / 共50页
点击查看更多>>
资源描述
高一物理力的合成与分解单元复习1如图为一轻质弹簧的长度L和弹力f大小的关系,试由图线确定:(1)弹簧的原长_;(2)弹簧的倔强系数_;(3)弹簧伸长0.05m时,弹力的大小_。2如图所示,质量为m的物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧1,托住下弹簧的端点A用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A上移的高度是多少?3如图所示,一个半球形的碗放在桌面上,碗口水平,O是球心,碗的内表面光滑。一根轻质杆的两端固定有两个小球,质量分别是m1,m2当它们静止时,m1、m2与球心的连线跟水平面分别成60,30角,则碗对两小球的弹力大小之比是()A12 B1 C1 D2ABF4如图物体A叠放在物体B上,B置于光滑水平面上。A、B质量分别为mA=6kg,mB=2kg,A、B之间的动摩擦因数=0.2,开始时F=10N,此后逐渐增加,在增大到45N的过程中,则( )A、当拉力F12N时,两物体均保持相对静止状态B、两物体开始没有相对运动,当拉力超过12N时,开始相对滑动C、两物体间从受力开始就有相对运动D、两物体间始终没有相对运动5如图所示,用大小相等,方向相反,并在同一水平面上的力N挤压相同的木板,木板中间夹着两块相同的砖,砖和木板保持相对静止,则( )A.砖间摩擦力为零 B. N越大,板和砖之间的摩擦力越大C.板、砖之间的摩擦力大于砖重 D. 两砖间没有相互挤压的力 6如图所示,A、B两物体的质量分别为M、m,A、B一起沿固定的、倾角为的斜面C匀速下滑,已知A、B间和A、C间的动摩擦因数分别1、2。求C对A的摩擦力f1和B对A的摩擦力f2。7如图所示,物体B的上表面水平,B上面载着物体A,当它们一起沿固定斜面C匀速下ABC滑的过程中物体A受力是( )A只受重力B只受重力和支持力C有重力、支持力和摩擦力D有重力、支持力、摩擦力和斜面对它的弹力8如图所示,质量为m1=0.4的物体A与质量为m2=2的物体B叠放在倾角为30的斜面上,物体B在平行于斜面向上的拉力F作用下匀速运动,已知A、B总保持相对静止,若A、B间的动摩擦因数为0.4,B与斜面间的动摩擦因数为/4,(g取10 m/s2)求:(1)则A、B间的摩擦力为多少?(2)拉力F为多少?ABDCEP9如图所示容器内盛有水,器具壁AB呈倾斜状,有一个小物块P处于图示状态,并保持静止,则该物体受力情况正确的是( )AP可能只受一个力 BP可能只受三个力CP不可能只受二个力 DP不是受到二个力就是受到四个力10如图所示,将轻绳的一端拴住质量为m的物块,并将它放在倾角为的斜面上,跨过定滑轮,绳的另一端悬吊着质量为M的物块,且mgsinMg,整个系统处于静止状态,若在物块m上再叠加一个小物体,物体系统仍保持原来的静止状态,则( )mMA绳的拉力一定增大 B物块m所受的合力不变C斜面对物块m的摩擦力可能减小图7D斜面对物块m的摩擦力一定增大11如图7所示,水平地面上的物体A,在斜向上的拉力F作用下,向右作匀速直线运动,则( )A物体A可能不受地面支持力的作用B物体A可能受到三个力的作用C物体A受到滑动摩擦力的大小为FcosD水平地面对A的支持力的大小为Fsin12如图1-5所示,光滑小球夹于竖直墙和装有铰链的薄板OA之间,当薄板和墙之间的夹角逐渐增大到90的过程中,则: 小球对板的压力增大图1-5小球对墙的压力减小小球作用于板的压力逐渐增大小球对板的压力不可能小于球所受的重力13 如图所示,轻绳OA的一端系在质量为m 物体上,另一端系在一个套在粗糙水平横杆MN上的圆环上。现用水平力F拉绳上一点,使物体从图中实线位置缓慢上升到图中虚线位置,但圆环仍保持在原来位置不动,则在这一过程中,拉力F、环与横杆的静摩力f和环对杆的压力N,它们的变化情况是: AF逐渐增大,f保持不变,N逐渐增大BF逐渐增大,f保持增大,N逐渐不变CF逐渐减小,f保持减小,N逐渐不变DF逐渐减小,f保持增大,N逐渐减小14BAOCA图12三段不可伸长的细绳OA、OB、OC共同悬挂一重物,如图12所示,B端固定,OB始终保持水平,A端水平向左移动一小段距离的过程中,下面说法正确的是().OA 绳拉力增大 .OA 绳拉力减少.OB 绳拉力减少 .OC 绳拉力增大15.如图所示系统处于静止状态,M受绳拉力为T,水平地面对M的摩擦力为f,M对地面压力为N,滑轮摩擦及绳的重力不计。当把M从(1)位置移到(2)位置时,系统仍处于静止状态。判断下列选项中正确的是( )AN,f,T均增大 BN,f增大,T不变图8CN,f,T均减小 DN增大,f减小,T不变16直角劈形木块(截面如图8)质量M=2kg,用外力顶靠在竖直墙上,已知木块与墙之间最大静摩擦力和木块对墙的压力成正比,即fm=kFN,比例系数k=0.5,则垂直作用于BC边的外力F应取何值木块保持静止。(g=10m/s2,sin37=0.6,cos37=0.8)图1117(13分)物体A质量为m=2kg,用两根轻绳B、C连接到竖直墙上,在物体A上加一恒力F,若图11中力F、轻绳AB与水平线夹角均为=60,要使两绳都能绷直,求恒力F的大小。AB18、如图所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为。质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?19两个相同的小球A和B,质量均为m,用长度相同的两根细线把A、B两球悬挂在水平天花板上的同一点O,并用长度相同的细线连接A、B两小球,然后,用一水平方向的力F作用在小球A上,此时三根细线均处于直线状态,且OB细线恰好处于竖直方向,如图所示。如果不考虑小球的大小,两小球均处于静止状态,则(1)OB绳对小球的拉力为多大?(2)OA绳对小球的拉力为多大?(3)作用力F为多大?F37BA20如图所示,A、B两物体叠放在水平地面上,已知A、B的质量分别为mA=10kg,mB=20kg,A、B之间,B与地面之间的动摩擦因数为=0.5。一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37今欲用外力将物体B匀速向右拉出,求所加水平力F的大小,并画出A、B的受力分析图。取g=10m/s2,sin37=0.6,cos37=0.8。参考答案:1由胡克定律当x=0,弹簧处于原长L0=10cm;由图当弹簧伸长或压缩5cm时,f=10N,k=200N/m;f=10N。2解:A点上升的高度等于弹簧2和1缩短的长度之和。A点上升,使弹簧2仍处于伸长状态时,弹力减小了mg/2,弹簧2比原来缩短x2=mg/2k2,弹簧1的弹力为mg/2,压缩量为x1=mg/2k1,所以x=x1+x2=mg(1/k1+1/k2)/2。A点上升,使弹簧2处于压缩状态时,向下的弹力mg/2,压缩量x2=mg/2k2,所以弹簧2总的压缩量x/=x2+mg/2k2=3mg/2k2。弹簧1上的弹力为mg+mg/2,x1/=3mg/2k2x= 3mg(1/k1+1/k2)/2。所以弹簧1的下端点A上移的高度是x=mg(1/k1+1/k2)/2,或3mg(1/k1+1/k2)/2。3B 4AD 5. A 6把A、B作为整体考虑,它沿斜面匀速下滑,C对A的摩擦力是滑动摩擦力。由平衡条件可知N=(m+M)gcos,f1=2N=2 (m+M)g。隔离B,B受A的摩擦力f2是静摩擦力,由平衡条件可知f2= f2=mgsin。7.B8FNm2gFABfABfFBAm1gfBA解:(1)对A分析(2)对B分析:m1g = fBA sin+ FABcosfBA cos = FBA sinfBA = 2NFBA = 2 N F=21NFN = FAB + m2gcosF = f + fAB +m2gsinf = FNFAB = FBA = 23 NfAB = fBA= 2N9. D 10BD 11.C 12.BD 13.B 14. A 15.B16.若木块刚好不下滑,Fsin37+kFNcos37=Mg,解得F=20N若木块刚好不上滑,Fsin37=Mg+kFNcos37,解得F=100N,所以取值为20NF100N。17解:要使两绳都能绷直,必须F10,F20,再利用正交分解法作数学讨论。作出A的受力分析图,由正交分解法的平衡条件:Fsin+ F1sinmg=0 FcosF2F1cos=0 解得,F=mgsinF1, F=F2/2cos+mg/2sin,两绳都绷直,必须F10,F20,由得F有最大值Fmax=23.1N 由得F有最小值Fmin=11.6N,所以F的取值为11.6NF23.1N。18.解:选取A和B整体为研究对象,它受到重力(M+m)g,地面支持力N,墙壁的弹力F和地面的摩擦力f的作用(如图甲所示)而处于平衡状态。根据平衡条件有:N-(M+m)g=0,F=f,可得N=(M+m)g再以B为研究对象,它受到重力mg,三棱柱对它的支持力NB,墙壁对它的弹力F的作用(如图乙所示)。而处于平衡状态,根据平衡条件有:mgNF图乙NB.cos=mg, NB.sin=F,解得F=mgtan.(M+m)gfFN图甲所以f=F=mgtan.19BTOBmgTOB = mg解:对B分析: 对A分析:TOAsin30= mgF = TOAcos30TOA = 2mgF = 3 mgAFTOAmgN1mAgf1TA20.A、B的受力分析如图 BN1mBgN2Ff1f2对A应用平衡条件 Tsin37=f1=N1 Tcos37+N1=mAg 联立、两式可得:N1=f1=N1=30N对B用平衡条件F=f1+f2=f1+N2=f1+(N1+mBg)=2 f1+mBg=60+0.52010=160N高一物理必修一、机械运动:一个物体相对于其它物体位置的变化。(运动是绝对的、静止是相对的)二、参考系:在描述一个物体运动时,选来作为参考标准的另一个物体。 参考系是假定不动的物体。 同一运动,选取不同参考系,运动情况可能不同。 方便原则(可任选参考系),通常以地球为参考系。三、质点:用来代替物体的有质量的点。 理想化模型 若物体的大小、形状时所研究的问题影响小,可以忽略时,此物体可视为质点。 同一物体,事同问题,有时可视为质点。四、时间和时刻:时间:在时间轴用一段线段表示,与物理过程相对应时刻:在时间轴上用点来表示,与物理状态相对应五、路程和位移:路程:标量,表示运动物体所通过的实际轨迹的长度位移:矢量,表示物体位置的变化,用由始位置指向末位置的有向线段来表示。六、打点计时器:记录物体运动时间与位移的常用工具电磁打点计时器:6V交变电流,振针周期性振动t=0.02s电火花打点计时器:220V交变电流,放电针周期性放电t=0.02s七、平均速度和瞬时速度:(矢量)平均速度:做变速度运动的物体一段时间平均快慢程度。V=S/t方向与位移方向相同瞬时速度:物体经过某一时刻(或某一位置)时运动的快慢程度,简称速度。其大小称瞬时速率,简称速率。文向为物体在运动轨迹上过该点的切线方向。八、加速度:矢量,速度的变化量与发生这一变化所用时间的比值。 加速度:定义式:a=(Vt-Vo)/t=V/t(速度的变化率)单位:m/s平方物理意义:描述速度变化的快慢。 加速度与速度、速度变化量间和关系a与V同方向a由V和t的比值确定a与V及V无必然联系 匀变速直线运动:加速恒定不变的直线运动。 判断物体做加速运动或减速运动的条件当a与V同向时加速当a与V反向时减速九、匀速直线运动规律 加速度公式a=(Vt-Vo)/tVt=Vo+atVo=Vt-at t=(Vt-Vo)/a 位移相关计计算方法S=Vt=(Vt+Vo)t/2=Vot+at平方/2=(Vt平方-Vo平方)2a 匀速直线运动分成相等的时间段,相邻两段位移差S=at平方 某段匀变直线运动,其平均速度等于时间中点的瞬时速度Vt=V(t/2)十、加速度求解逐差法四段a=(S3+S4)-(S1+S2)/4t平方五段a=(S4+S5)-(S1+S2)/6t平方六段a=(S4+S5+S6)-(S1+S2+S3)/9t平方十一、自由落体:物体只在重力作用下从静止开始下落的运动 自由落体是初速度为0的匀速直线运动 同一地点,一切物体的加速度都相同,为重力加速度(g) 重力加速度与纬度有关,通常取9.8或10m/s平物理定理、定律、公式表一、质点的运动(1)-直线运动1)匀变速直线运动1.平均速度V平s/t(定义式) 2.有用推论Vt2-Vo22as3.中间时刻速度Vt/2V平(Vt+Vo)/2 4.末速度VtVo+at5.中间位置速度Vs/2(Vo2+Vt2)/21/2 6.位移sV平tVot+at2/2Vt/2t7.加速度a(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a0;反向则aF2)2.互成角度力的合成:F(F12+F22+2F1F2cos)1/2(余弦定理) F1F2时:F(F12+F22)1/23.合力大小范围:|F1-F2|F|F1+F2|4.力的正交分解:FxFcos,FyFsin(为合力与x轴之间的夹角tgFy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合ma或aF合/ma由合外力决定,与合外力方向一致3.牛顿第三运动定律:F-F负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动4.共点力的平衡F合0,推广 正交分解法、三力汇交原理5.超重:FNG,失重:FNG 加速度方向向下,均失重,加速度方向向上,均超重6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子见第一册P67注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。五、振动和波(机械振动与机械振动的传播)1.简谐振动F-kx F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向2.单摆周期T2(l/g)1/2 l:摆长(m),g:当地重力加速度值,成立条件:摆角r3.受迫振动频率特点:ff驱动力4.发生共振条件:f驱动力f固,Amax,共振的防止和应用见第一册P1755.机械波、横波、纵波见第二册P26.波速vs/tf/T波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定7.声波的波速(在空气中)0:332m/s;20:344m/s;30:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同相互接近,接收频率增大,反之,减小见第二册P21注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用见第二册P22/振动中的能量转化见第一册P173。六、冲量与动量(物体的受力与动量的变化)1.动量:pmv p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同3.冲量:IFt I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定4.动量定理:Ip或Ftmvtmvo p:动量变化pmvtmvo,是矢量式5.动量守恒定律:p前总p后总或pp也可以是m1v1+m2v2m1v1+m2v26.弹性碰撞:p0;Ek0 即系统的动量和动能均守恒7.非弹性碰撞p0;0EKEKm EK:损失的动能,EKm:损失的最大动能8.完全非弹性碰撞p0;EKEKm 碰后连在一起成一整体9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1(m1-m2)v1/(m1+m2) v22m1v1/(m1+m2)10.由9得的推论-等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2fs相对 vt:共同速度,f:阻力,s相对子弹相对长木块的位移注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行见第一册P128。七、功和能(功是能量转化的量度)1.功:WFscos(定义式)W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角2.重力做功:Wabmghab m:物体的质量,g9.8m/s210m/s2,hab:a与b高度差(habha-hb)3.电场力做功:WabqUab q:电量(C),Uab:a与b之间电势差(V)即Uabab4.电功:WUIt(普适式) U:电压(V),I:电流(A),t:通电时间(s)5.功率:PW/t(定义式) P:功率瓦(W),W:t时间内所做的功(J),t:做功所用时间(s)6.汽车牵引力的功率:PFv;P平Fv平 P:瞬时功率,P平:平均功率7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmaxP额/f)8.电功率:PUI(普适式) U:电路电压(V),I:电路电流(A)9.焦耳定律:QI2Rt Q:电热(J),I:电流强度(A),R:电阻值(),t:通电时间(s)10.纯电阻电路中IU/R;PUIU2/RI2R;QWUItU2t/RI2Rt11.动能:Ekmv2/2 Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)12.重力势能:EPmgh EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)13.电势能:EAqA EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)(从零势能面起)14.动能定理(对物体做正功,物体的动能增加):W合mvt2/2-mvo2/2或W合EKW合:外力对物体做的总功,EK:动能变化EK(mvt2/2-mvo2/2)15.机械能守恒定律:E0或EK1+EP1EK2+EP2也可以是mv12/2+mgh1mv22/2+mgh216.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG-EP注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;(2)O090O 做正功;90O180O做负功;90o不做功(力的方向与位移(速度)方向垂直时该力不做功);(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)3.6106J,1eV1.6010-19J;*(7)弹簧弹性势能Ekx2/2,与劲度系数和形变量有关。八、分子动理论、能量守恒定律1.阿伏加德罗常数NA6.021023/mol;分子直径数量级10-10米2.油膜法测分子直径dV/s V:单分子油膜的体积(m3),S:油膜表面积(m)23.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。4.分子间的引力和斥力(1)rr0,f引r0,f引f斥,F分子力表现为引力(4)r10r0,f引f斥0,F分子力0,E分子势能05.热力学第一定律W+QU(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),U:增加的内能(J),涉及到第一类永动机不可造出见第二册P406.热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性)涉及到第二类永动机不可造出见第二册P447.热力学第三定律:热力学零度不可达到宇宙温度下限:273.15摄氏度(热力学零度)注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;(2)温度是分子平均动能的标志;3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引F斥且分子势能最小;(5)气体膨胀,外界对气体做负功W0;吸收热量,Q0(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律见第二册P41/能源的开发与利用、环保见第二册P47/物体的内能、分子的动能、分子势能见第二册P47。九、气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:Tt+273 T:热力学温度(K),t:摄氏温度()体积V:气体分子所能占据的空间,单位换算:1m3103L106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm1.013105Pa76cmHg(1Pa1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1p2V2/T2 PV/T恒量,T为热力学温度(K)注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(),而T为热力学温度(K)。十、电场1.两种电荷、电荷守恒定律、元电荷:(e1.6010-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:FkQ1Q2/r2(在真空中)F:点电荷间的作用力(N),k:静电力常量k9.0109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引3.电场强度:EF/q(定义式、计算式)E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)4.真空点(源)电荷形成的电场EkQ/r2 r:源电荷到该位置的距离(m),Q:源电荷的电量5.匀强电场的场强EUAB/d UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)6.电场力:FqE F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)7.电势与电势差:UABA-B,UABWAB/q-EAB/q8.电场力做功:WABqUABEqdWAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)9.电势能:EAqA EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)10.电势能的变化EABEB-EA 带电体在电场中从A位置到B位置时电势能的差值11.电场力做功与电势能变化EAB-WAB-qUAB (电势能的增量等于电场力做功的负值)12.电容CQ/U(定义式,计算式) C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)13.平行板电容器的电容CS/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)常见电容器见第二册P11114.带电粒子在电场中的加速(Vo0):WEK或qUmVt2/2,Vt(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平 垂直电场方向:匀速直线运动LVot(在带等量异种电荷的平行极板中:EU/d)抛运动 平行电场方向:初速度为零的匀加速直线运动dat2/2,aF/mqE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记见图第二册P98;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F106F1012PF;(7)电子伏(eV)是能量的单位,1eV1.6010-19J;(8)其它相关内容:静电屏蔽见第二册P101/示波管、示波器及其应用见第二册P114等势面见第二册P105。十一、恒定电流1.电流强度:Iq/tI:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)2.欧姆定律:IU/R I:导体电流强度(A),U:导体两端电压(V),R:导体阻值()3.电阻、电阻定律:RL/S:电阻率(m),L:导体的长度(m),S:导体横截面积(m2)4.闭合电路欧姆定律:IE/(r+R)或EIr+IR也可以是EU内+U外I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(),r:电源内阻()5.电功与电功率:WUIt,PUIW:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)6.焦耳定律:QI2RtQ:电热(J),I:通过导体的电流(A),R:导体的电阻值(),t:通电时间(s)7.纯电阻电路中:由于IU/R,WQ,因此WQUItI2RtU2t/R8.电源总动率、电源输出功率、电源效率:P总IE,P出IU,P出/P总I:电路总电流(A),E:电源电动势(V),U:路端电压(V),:电源效率9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串R1+R2+R3+ 1/R并1/R1+1/R2+1/R3+电流关系 I总I1I2I3 I并I1+I2+I3+电压关系 U总U1+U2+U3+ U总U1U2U3功率分配 P总P1+P2+P3+ P总P1+P2+P3+10.欧姆表测电阻(1)电路组成 (2)测量原理两表笔短接后,调节Ro使电表指针满偏,得 IgE/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 IxE/(r+Rg+Ro+Rx)E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数注意挡位(倍率)、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。11.伏安法测电阻电流表内接法: 电压表示数:UUR+UA 电流表外接法: 电流表示数:IIR+IVRx的测量值U/I(UA+UR)/IRRA+RxR真 Rx的测量值U/IUR/(IR+IV)RVRx/(RV+R)RA 或Rx(RARV)1/2 选用电路条件RxRV 或RxRx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件RpRx注1)单位换算:1A103mA106A;1kV103V106mA;1M103k106(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用见第二册P127。十二、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T1N/Am2.安培力FBIL;(注:LB) B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)3.洛仑兹力fqVB(注VB);质谱仪见第二册P155 f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动VV0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向f洛mV2/rm2rmr(2/T)2qVB;rmV/qB;T2m/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(二倍弦切角)。注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握见图及第二册P144;(3)其它相关内容:地磁场/磁电式电表原理见第二册P150/回旋加速器见第二册P156/磁性材料十三、电磁感应1.感应电动势的大小计算公式1)En/t(普适公式)法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率2)EBLV垂(切割磁感线运动) L:有效长度(m)3)EmnBS(交流发电机最大的感应电动势) Em:感应电动势峰值4)EBL2/2(导体一端固定以旋转切割) :角速度(rad/s),V:速度(m/s)2.磁通量BS :磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)3.感应电动势的正负极可利用感应电流方向判定电源内部的电流方向:由负极流向正极*4.自感电动势E自n/tLI/tL:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,t:所用时间,I/t:自感电流变化率(变化的快慢)注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点见第二册P173;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H103mH106H。(4)其它相关内容:自感见第二册P178/日光灯见第二册P180。十四、交变电流(正弦式交变电流)1.电压瞬时值eEmsint 电流瞬时值iImsint;(2f)2.电动势峰值EmnBS2BLv 电流峰值(纯电阻电路中)ImEm/R总3.正(余)弦式交变电流有效值:EEm/(2)1/2;UUm/(2)1/2 ;IIm/(2)1/24.理想变压器原副线圈中的电压与电流及功率关系U1/U2n1/n2; I1/I2n2/n2; P入P出5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损(P/U)2R;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)见第二册P198;6.公式1、2、3、4中物理量及单位::角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。高一上物理期末考试知识点复习提纲专题一:运动的描述【知识要点】1.质点(A)(1)没有形状、大小,而具有质量的点。(2)质点是一个理想化的物理模型,实际并不存在。(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。2.参考系(A)(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。对参考系应明确以下几点:对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系3.路程和位移(A)(1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。(3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。4、速度、平均速度和瞬时速度(A)(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率5、匀速直线运动(A)(1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。(2) 匀速直线运动的xt图象和v-t图象(A)(1)位移图象(s-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。(2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。由图可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一个质点沿正方向以20m/s的速度运动,另一个反方向以10m/s速度运动。6、加速度(A)(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!