高中数学竞赛讲座排列组合、二项式定理.doc

上传人:jian****018 文档编号:9780890 上传时间:2020-04-07 格式:DOC 页数:4 大小:220.50KB
返回 下载 相关 举报
高中数学竞赛讲座排列组合、二项式定理.doc_第1页
第1页 / 共4页
高中数学竞赛讲座排列组合、二项式定理.doc_第2页
第2页 / 共4页
高中数学竞赛讲座排列组合、二项式定理.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
竞赛讲座19-排列、组合、二项式定理基础知识1排列组合题的求解策略(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略(2)分类与分步有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理(3)对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列(6)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为,这也就是方程的正整数解的个数2圆排列(1)由的个元素中,每次取出个元素排在一个圆环上,叫做一个圆排列(或叫环状排列)(2)圆排列有三个特点:(i)无头无尾;(ii)按照同一方向转换后仍是同一排列;(iii)两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列(3)定理:在的个元素中,每次取出个不同的元素进行圆排列,圆排列数为3可重排列允许元素重复出现的排列,叫做有重复的排列在个不同的元素中,每次取出个元素,元素可以重复出现,按照一定的顺序那么第一、第二、第位是的选取元素的方法都是种,所以从个不同的元素中,每次取出个元素的可重复的排列数为4不尽相异元素的全排列如果个元素中,有个元素相同,又有个元素相同,又有个元素相同(),这个元素全部取的排列叫做不尽相异的个元素的全排列,它的排列数是5可重组合(1)从个元素,每次取出个元素,允许所取的元素重复出现次的组合叫从个元素取出个有重复的组合(2)定理:从个元素每次取出个元素有重复的组合数为:6二项式定理(1)二项式定理()(2)二项开展式共有项(3)()叫做二项开展式的通项,这是开展式的第项(4)二项开展式中首末两端等距离的两项的二项式系数相等(5)如果二项式的幂指数是偶数,则中间一项的二项式系数最大;如果是奇数,则中间两项的二项式系数与最大(6)二项式开展式中奇数项的二项式系数之和等于偶数项系数之和,即7数学竞赛中涉及二项式定理的题型及解决问题的方法二项式定理,由于结构复杂,多年来在高考中未能充分展示应有的知识地位,而数学竞赛的命题者却对其情有独钟(1)利用二项式定理判断整除问题:往往需要构造对偶式;(2)处理整除性问题:构造对偶式或利用与递推式的结合;(3)求证不等式:通过二项式展开,取展开式中的若干项进行放缩;(4)综合其他知识解决某些综合问题:有些较复杂的问题看似与二项式定理无关,其实通过观察、分析题目的特征,联想构造合适的二项式模型,便可使问题迅速解决例题分析例1数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?例2有多少个能被3整除而又含有数字6的五位数?例3有个人参加收发电报培训,每两人结为一对互发互收,有多少种不同的结对方式?例4将个不同的小球放入个不同的盒子中,要使每个盒子都不空,共有多少种放法?例5在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?例6用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有多少个?例7用五种颜色给正方体的各个面涂色,并使相邻面必须涂不同的颜色,共有多少种不同的涂色方式?例8某种产品有4只次品和6只正品(每只产品可区分),每次取一只测试,直到4只次品全部测出为止求最后一只次品在第五次测试时被发现的不同情形有多少种?例9在平面上给出5个点,连结这些点的直线互不平行,互不重合,也互不垂直,过每点向其余四点的连线作垂线,求这此垂线的交点最多能有多少个?例10。.8位政治家举行圆桌会议,两位互为政敌的政治家不愿相邻,其入坐方法有多少种?例11某城市有6条南北走向的街道,5条东西走向的街道如果有人从城南北角(图点)走到东南角中点最短的走法有多少种?例12用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有多少种可能的号码?例13将个相同的小球,放入个不同的盒子()(1)有多少种不同的放法?(2)如果不允许空盒应有多少种不同的放法?例148个女孩和25个男孩围成一圈,任意两个女孩之间至少站着两个男孩(只要把圆旋转一下就重合的排列认为是相同的)例15设,求的值例16当时,的整数部分是奇数还是偶数?证明你的结论例17已知数列()满足:求证:对于任意正整数,是一次多项式或零次多项式例18若(),求证:例19设的整数部分,求的个数数字例20已知()求的个位数字例21试证大于的最小整数能被整除()例22求证:对任意的正整数,不等式例23设,且求证对于每个,都有训练题18次射击,命中3次,其中愉有2次连续命中的情形共有()种(A)15(B)30(C)48(D)602在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。那么,在上述3名选手之间比赛的场数是()(A)0 (B)1 (C)2 (D)33若的展开式为,则的值为(A)(B)(C)(D)4某人从楼下到楼上要走11级楼梯,每步可走1级或2级,不同的走法有()种(A)144(B)121(C)64(D)815从7名男乒乓球队员,5名女乒乓球队员中选出4名进行男女混合双打,不同的分组方法有()种(A)(B)(C)(D)6有5分、1角、5角的人民币各2枚、3张、9张,可组成的不同币值(非0)有()种(A)79(B)80(C)88(D)897从0,1,2,3,4,5,6,7,8,9这10个数中取出3个数,使其和为不小于10的偶数,不同的取法有_种8 把写成的形式,为自然数,则9已知直线ax+by+c=0中的a,b,c是取自集合-3,-2,-1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,那么,这样的直线的条数是_10设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种11如果:(1)a,b,c,d都属于1,2,3,4;(2)ab,bc,cd,da;(3)a是a,b,c,d中的最小值,那么,可以组成的不同的四位数的个数是_12在一个正六边形的六个区域种植观赏植物,要求同一块中种同一种植物,相邻的两块种不同的植物。现有4种不同的植物可供选择,则有种载种方案1310人围圆桌而,如果甲、乙二人中间相隔4人,有种坐法14除以的余数是15设的展开中,用记它的整数部分,记它的小数部分求证:是一定值16从中,按从小到大的顺序选取四个数,使得,问符合上要求的不同取法有多少种?178人围张一张圆桌,其中、两人不得相邻,而、两人以必须相邻的不同围坐方式有多少种?184对夫妇去看电影,8人坐成一排若每位女性的邻座只能丈夫或另外的女性,共有多少种坐法?19求证:20设,求证:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!