资源描述
2012年高考文科数学解析分类汇编:统计一、选择题1 (2012年高考(四川文)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为()A101B808C1212D20122 (2012年高考(陕西文)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ()A46,45,56B46,45,53 C47,45,56D45,47,533 (2012年高考(山东文)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差4 (2012年高考(江西文)小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()A30%B10%C3%D不能确定5 (2012年高考(湖北文)容量为20的样本数据,分组后的频数如下表分组频数234542则样本数据落在区间的频率为()ABCD二、填空题6 (2012年高考(浙江文)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为_.7 (2012年高考(山东文)右图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为,.已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为_.8 (2012年高考(湖南文)图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_.(注:方差,其中为x1,x2,xn的平均数)来9 (2012年高考(湖北文)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有_人.10(2012年高考(广东文)(统计)由正整数组成的一组数据、,其平均数和中位数都是2,且标准差等于1,则这组数据为_.(从小到大排列)11(2012年高考(福建文)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_.三、解答题12(2012年高考(辽宁文)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.()根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女合计 ()将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附13(2012年高考(广东文)(统计)某校100位学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:、.()求图中的值;()根据频率分布直方图,估计这100名学生语文成绩的平均分;()若这100名学生的语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.分数段14(2012年高考(北京文)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:方差,其中为的平均数)2012年高考文科数学解析分类汇编:统计参考答案一、选择题1. 答案B 解析N= 点评解决分层抽样问题,关键是求出抽样比,此类问题难点要注意是否需要剔除个体. 2. A解析:考查统计中“中位数、众数、极差”有关概念,中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数.当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数.众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个.简单的说,就是一组数据中占比例最多的那个数.极差是指总体各单位的标志值中,最大标志值与最小标志值之差.中位数和众数不同,中位数不一定在这组数据中.而众数必定在该组数据. 3. 解析:设A样本数据的数据为,根据题意可知B样本数据的数据为,则依据统计知识可知A,B两样本中的众数、平均数和中位数都相差2,唯有方差相同,即标准差相同.答案应选D. 4. 【答案】C 【解析】本题是一个读图题,图形看懂结果很容易计算.鸡蛋开占食品开支,小波一星期的鸡蛋开支占总开支的百分之化为. 5. B【解析】由频率分布表可知:样本数据落在区间内的頻数为2+3+4=9,样本总数为,故样本数据落在区间内频率为.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查. 二、填空题6. 【答案】160 【命题意图】本题考查了随机抽样中的分层抽样,也是随机抽样中惯考的形式,利用总体重的个体数比,确定样本中某一个体的样本容量. 【解析】总体中男生与女生的比例为,样本中男生人数为. 7. 答案:9 解析:根据题意可知低于22.5的城市的频率为,不低于25.5的城市的频率为,则样本中平均气温不低于25.5的城市个数为. 另解:最左边两个矩形面积之和为0.101+0.121=0.22,总城市数为110.22=50,最右面矩形面积为0.181=0.18,500.18=9. 8. 【答案】6.8 【解析】, . 【点评】本题考查统计中的茎叶图方差等基础知识,考查分析问题、解决问题的能力. 9. 6【解析】设抽取的女运动员的人数为,则根据分层抽样的特性,有,解得.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 10.解析:1、1、3、3.由,可得,因为、都是正整数,所以只有1、3组合或2、2组合.若其中有一个是2、2组合,不妨设,则由可得 ,此时、无解,所以与,与都是1、3组合,因此这组数据为1、1、3、3. 11. 【答案】12 【解析】 【考点定位】此题考查分层抽样的概念和具体做法,明确分层抽样的本质是关键 三、解答题12. 【答案与解析】 (I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而22列联表如下: 由22列联表中数据代入公式计算,得: 因为3.0303.841,所以,没有理由认为“体育迷”与性别有关. 【点评】本题主要考查统计中的频率分布直方图、独立性检验、古典概型,考查分析解决问题的能力、运算求解能力,难度适中.准确读取频率分布直方图中的数据是解题的关键.求概率时列举基本事件一定要做到不重不漏,此处极容易出错. 13.解析:()由,解得. (). ()这100位学生语文成绩在、的分别有5人、40人、30人、20人,按照表中所给比例,数学成绩在、的分别有5人、20人、40人、25人,共90人,所以数学成绩在之外的人数有10人. 14. 【考点定位】此题的难度集中在第三问,基他两问难度不大,第三问是对能力的考查,不要求证明,即不要求说明理由,但是要求学生对方差意义的理解非常深刻. (1)厨余垃圾投放正确的概率约为 = (2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确. 事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P(),约为.所以P(A)约为1-0.7=0,3. (3)当,时,取得最大值.因为, 所以.
展开阅读全文