过程装备与控制工程专业英语阅读材料翻译.doc

上传人:wux****ua 文档编号:9105295 上传时间:2020-04-03 格式:DOC 页数:49 大小:231KB
返回 下载 相关 举报
过程装备与控制工程专业英语阅读材料翻译.doc_第1页
第1页 / 共49页
过程装备与控制工程专业英语阅读材料翻译.doc_第2页
第2页 / 共49页
过程装备与控制工程专业英语阅读材料翻译.doc_第3页
第3页 / 共49页
点击查看更多>>
资源描述
袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇蚂螆羅膆莁虿袁膅蒄袄膀膄薆蚇肆膃蚈袂羂节莈蚅袈芁蒀袁螄芁薃蚄膂芀莂衿肈艿蒅螂羄芈薇羇袀芇虿螀腿芆荿薃肅莅蒁螈羁莅薃薁袇莄芃螇螃莃蒅蕿膁莂薈袅肇莁蚀蚈羃莀莀袃衿荿蒂蚆膈葿薄袂肄蒈蚇蚄羀蒇莆袀袆肃蕿蚃袂肂蚁羈膀肂莁螁肆肁蒃羆羂肀薅蝿袈腿蚇薂膇膈莇螈肃膇葿薀聿膇 专业英语翻译(楠哥) Reading Material 16Pressure Vessel CodesHistory of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels were frequent. A firetube boiler explosion on the Mississippi River steamboat Sultana on April 27, 1865, resulted in the boats sinking within 20 minutes and the death of 1500 soldiers going home after the Civil War. This type of catastrophe continued unabated into the early 1900s. In 1905, a destructive explosion of a firetube boiler in a shoe factory in Brockton, Massachusetts, killed 58 people, injured 117 others, and did $ 400000 in property damage. In 1906, another explosion in a shoe factory in Lynn, Massachusetts, resulted in death, injury, and extensive property damage. After this accident, the Massachusetts governor directed the formation of a Board of Boiler Rules. The first set of rules for the design and construction of boilers was approved in Massachusetts on August 30, 1907. This code was three pages long.In 1911, Colonel E. D. Meier, the president of the American Society of Mechanical Engineers, established a committee to write a set of rules for the design and construction of boilers and pressure vessels. On February 13, 1915, the first ASME Boiler Code was issued. It was entitled “Boiler Construction Code, 1914 Edition.” This was the beginning of the various sections of the ASME Boiler and Pressure Vessel Code, which ultimately became Section 1, Power Boiler.The first ASME Code for pressure vessels was issued as “Rules for the Construction of Unfired Pressure Vessels, ” Section , 1925 edition. The rules applied to vessels over 6 in. in diameter, volume over 1.5 ft3, and pressure over 30 psi. In December 1931, a Joint API-ASME Committee was formed to develop an unfired pressure vessel code for the petroleum industry. The first edition was issued in 1934. For the next 17 years, two separated unfired pressure vessel codes existed. In 1951, the last API-ASME Code was issued as a separated document. In 1952, the two codes were consolidated into one code-the ASME Unfired Pressure Vessel Code,Section . This continued until the 1968 edition. At that time, the original code became Section , Division 1, Pressure Vessels, and another new part was issued, which was Section , Division 2, Alternative Rules for Pressure Vessels.The ANSI/ASME Boiler and Pressure Vessel Code is issued by the American Society of Mechanical Engineers with approval by the American National Standards Institute (ANSI) as an ANSI/ASME document. One or more sections of the ANSI/ASME Boiler and Pressure Vessel code have been established as the legal requirements in 47 states in the United States and in all provinces of Canada. Also, in many other countries of the world, the ASME Boiler and Pressure Vessel Code is used to construct boilers and pressure vessels.Organization of the ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code is divided into many sections, divisions, parts, and subparts. Some of these sections relate to a specific kind of equipment and application; others relate to specific materials and methods for application and control of equipment; and others relate to care and inspection of installed equipment. The following Sections specifically relate to boiler and pressure vessel design and construction.Section Power Boilers (1 volume)Section Division 1 Nuclear Power Plant Components (7 volumes)Division 2 Concrete Reactor Vessels and Containment (1 volume)Code Case Case 1 Components in Elevated Temperature service (in Nuclear Code N-47 Case book)Section Heating Boilers (1 volume)Section Division 1 Pressure Vessels (1 volume)Division 2 Alternative Rules for Pressure Vessels (1 volume )Section Fiberglass-Reinforced Plastic Pressure Vessels (1 volume)A new edition of the ASME Boiler and Pressure Vessel Code is issued on July 1 every three years and new addenda are issued every six months on January 1 and July 1. the new edition of the code becomes mandatory when it appears. The addenda are permissive at the date of issuance and become mandatory six months after that date.Worldwide Pressure Vessel Codes In addition to the ASME Boiler and Pressure Vessel Code, which is used worldwide, many other pressure vessel codes have been legally adopted in various countries. Difficulty often occurs when vessels are designed in one country, built in another country, and installed in still a different country. With this worldwide construction this is often the case.The following list is a partial summary of some of the various codes used in different countries:Australia Australian Code for Boilers and Pressure Vessels, SAA Boiler Code (Series AS1200): AS1210, Unfired Pressure Vessels and Class 1 H, Pressure Vessels of Advanced Design and Construction, Standards Association of Australia.France Construction Code Calculation Rules for Unfired Pressure Vessels, Syndicat National de la Chaudronnerie et de la Tuyauterie Industrielle (SNCT), Paris, France.United Kingdom British Code BS.5500, British Standards Institution, London, England. Japan Japanese Pressure Vessel Code, Ministry of LABOR, PUBLISHED BY Japan Boiler Association, Tokyo, Japan; Japanese Standard, Construction of Pressure Vessels, JIS B Gas Control Law, Ministry of International Trade and Industry, published by The Institution for Safety of High Pressure Gas Engineering , Tokyo, Japan.Italy Italian Pressure Vessel Code, National Association for combustion Control (ANCC), Milan, Italy.Belgium Code for Good Practice for the Construction of Pressure Vessels, Belgian Standard Institute (IBN), Brussels, Belgium.Sweden Swedish Pressure Vessel Code, Tryckkarls Kommissioner, the Swedish Pressure Vessel Commission, Stockholm, Sweden. 压力容器规范美国压力容器规范的历史 从19世纪末到20世纪初,锅炉和压力容器的爆炸是常有发生。1865年4月27日,在密西西比河轮船Sultana号上,一个火管锅炉爆炸导致船在二十分钟内沉没,使内战后回家的1500名士兵死亡。这种灾难在二十世纪初仍未减少。1905年,在马塞诸塞州布鲁克市的一家制鞋厂里,一个火管锅炉的毁灭性爆炸造成58人死亡,117人受伤和400000美元的财产损失。1906年,马塞诸塞州林恩市的一家制鞋厂里的另一次爆炸,造成死亡,受伤和大量财产损失。在这次事故之后,马塞诸塞州州长指挥成立了锅炉规范委员会。1907年8月30日,设计和建造锅炉的第一套规范在马塞诸塞州得到批准。这个规范总共有三页。1911年,美国机械工程师学会主席Colonel E. D. Meier成立了一个委员会,专门起草锅炉和压力容器设计和建造的规范。1915年2月13日,第一部锅炉规范ASME被颁布。它被提名为锅炉建造规范:1914版。这是ASME锅炉和压力容器规范各篇的开始,最后变成了第一篇动力锅炉。第一个压力容器的规范ASME,是以1925版第VIII篇“不用火加热压力容器的建造规则”的名称颁布的。该规则适用于直径大于6英寸,容积大于1.5ft和压力高于30Pa的容器。1931年12月,为了发展适合于石油工业不用火加热的容器规范,专门成立了APIASME联合委员会。第一版本在1934年颁布。在随后的17年时间里,存在两个独立的不用火加热容器规范。1951年,最后的APIASME规范以独立的文件颁布。1952年,两个规范合并成一个规范ASME不用火加热压力容器规范(第VIII篇)。这部规范一直延续到1968版。那时,原来的规范变为第一分篇压力容器(第VIII篇),第二分篇压力容器另一规则(第VIII篇)作为另外新的部分被颁布。经美国国家标准局(ANSI)批准,美国机械工程师学会以ASNI/ASME文件的形式,颁布了ASNI/ASME锅炉和压力容器规范。ASNI/ASME锅炉和压力容器规范的一篇或多篇,已经在美国的47个州和加拿大的所有省中,以法律的形式确立。同样,在世界的许多其他国家,ASME锅炉和压力容器规范,也被用来建造锅炉和压力容器。ASME锅炉和压力容器规范的组成 ASME锅炉和压力容器规范分成许多篇,分篇,部分和辅助部分。在这些篇中,一些涉及到特定类型的设备和应用;另外的涉及特定的材料和设备应用与控制的方法;其余的涉及安装的设备的维护和检修。下面各篇特别涉及锅炉和压力容器个设计和建造。第一部分动力锅炉(1卷)第三部分第1节 核电厂部件(7卷)第2节 混凝土反应容器和控制(1卷)标准容器 案例1升温装置中的部件(在核规范N-47案例书中)第三部分加热锅炉第八部分第1节 压力容器(1卷)第2节 <<力容器另一规则(1卷)第X部分玻璃纤维强化塑料压力容器(1卷)新版ASME锅炉和压力容器规范,每3年于7月1日颁布,新附录每6个月于1月1日和7月1日颁布。新版规范一问世,就成为强制的规范。在颁布日期上,附录是可以选择的,半颁布日期定了以后,它就是强制性的。世界压力容器规范 除了在全世界使用的ASME锅炉和压力容器规范外,许多不同的压力容器规范,已经在不同的国家得到法律上的采纳。当容器在一个国家设计,在另一个国家建造,并且在不同的国家安装时,就会产生困难。由于这种世界范围的建造的存在,这种案例是经常有的。下面所列举的是一些在不同国家中使用的各种规范的部分摘要:澳大利亚 澳大利亚锅炉与压力容器标准,SAA锅炉标准(AS1200系列):AS1210,3非火加热类压力容器和分类1H,改进后的设计与制造压力容器,澳大利亚协会标准。法国 不用火加热压力容器建造规范计算规则,法国巴黎市SNCT结构。 英国 英国规范 BS.55OO,英国伦敦市英国标准协会。日本 日本压力容器规范,劳动部,制定),日本东京市日本锅炉协会出版;JISB8243日本标准,压力容器建造,日本东京市日本标准协会出版;日本高压气体控制法,国际贸易与产业部(制定),日本东京高压气体工程安全协会出版。意大利 意大利压力容器规范,意大利米兰市国家燃烧控制协会(ANCC)。 比利时 <压力容器构造可靠实践规范,比利时布鲁塞尔市比利时标准协会(IBN)。瑞典 瑞典压力容器规范,瑞典斯德哥尔摩市瑞典压力容器委员会。 Reading Material 17Stress CategoriesThe various possible modes of failure which confront the pressure vessel designer are:(1) Excessive elastic deformation including elastic instability.(2) Excessive plastic deformation.(3) Brittle fracture.(4) Stress rupture/creep deformation (inelastic).(5) Plastic instability-incremental collapse.(6) High strain-low cycle fatigue.(7) Stress corrosion.(8) Corrosion fatigue.In dealing with these various modes of failure, we assume that the designer has at his disposal a picture of the state of stress within the part in question. This would be obtained either through calculation or measurements of the both mechanical and thermal stresses which could occur throughout the entire vessel during transient and steady state operations. The question one must ask is what do these numbers mean in relation to the adequacy of the design? Will they insure safe and satisfactory performance of a component? It is against these various failure modes that the pressure vessel designer must compare and interpret stress values. For example, elastic deformation and elastic instability (buckling) cannot be controlled by imposing upper limits to the calculated stress alone. One must consider, in addition, the geometry and stiffness of a component as well as properties of the material.The plastic deformation mode of failure can, on the other hand, be controlled by imposing limits on calculated stresses, but unlike the fatigue and stress corrosion modes of failure, peak stress does not tell the whole story. Careful consideration must be given to the consequences of yielding, and therefore the type of loading and the distribution of stress resulting therefrom must be carefully studied. The designer must consider, in addition to setting limits for allowable stress, some adequate and proper failure theory in order to define how the various stresses in a component react and contribute to the strength of that part.As mentioned previously, different types of stress require different limits, and before establishing these limits it was necessary to choose the stress categories to which limits should be applied. The categories and sub-categories chosen wereas follows:A. Primary Stress.(a) General primary membrane stress.(b) Local primary membrane stress.(c) Primary bending stress.B. Secondary Stress.C. Peak Stress.The major stress categories are primary, sec9ondary, and peak. Their chief characteristics may be described briefly as follows:(a) Primary stress is a stress developed by the imposed loading which is necessary to satisfy the laws of equilibrium between external and internal forces and moments. The basic characteristic of a primary stress is that it is not self-limiting. If a primary stress exceeds the yield strength of the material through the entire thickness, the prevention of failure is entirely dependent on the strain-hardening properties of the material.(b) Secondary stress is a stress developed by the self-constraint of a structure. It must satisfy an imposed strain pattern rather than being in equilibrium with an external load. The basic characteristic of a secondary stress is that it is self-limiting. Local yielding and minor distortion can satisfy the discontinuity conditions or thermal expansions which cause the stress to occur.(c) Peak stress is the highest stress in the region under consideration. The basic characteristic of a peak stress is that it causes no significant distortion and is objectionable mostly as a possible source of fatigue failure.The need for dividing primary stress into membrane and bending components is that, as will be discussed later, limit design theory shows that the calculated value of a primary bending stress may be allowed to go higher than the calculated value of a primary membrane stress. The placing in the primary category of local membrane stress produced by mechanical loads, however, requires some explanation because this type of stress really has the basic characteristics of a secondary stress. It is self-limiting and when it exceeds yield, the external load will be resisted by other parts of the structure, but this shift may involve intolerable distortion and it was felt that must be limited to a lower value than other secondary stresses, such as discontinuity bending stress and thermal stress.Secondary stress could be divided into membrane and bending components, just as was done for primary stress, but after the removal of local membrane stress to the primary category, kit appeared that all the remaining secondary stresses could be controlled by the same limit and this division was unnecessary.Thermal stress are never classed as primary stresses, but they appear in both of the other categories, secondary and peak. Thermal stresses which can produce distortion of the most complete suppression of the differential expansion, and thus cause no significant distortion, are classed as peak stresses.One of the commonest types of peak stress is that produced by a notch, which might be a small hole or a fillet. The phenomenon of stress concentration is well-known and requires no further explanation here.Many cases arise in which it is not obvious which category a stress should be placed in, and considerable judgment is required. In order to standardize this procedure and use the judgmentof the writers of the Code rather than the judgment of individual designers, a table was prepared covering most of the situations which arise in pressure vessel design and specifying which category each stress must be placed in.The potential failure modes and various stress categories are related to the Code provisions as follows:(a) The primary stress limits are intended to prevent plastic deformation and to provide a nominal factor of safety of the ductile burst pressure.(b) The primary plus secondary stress limits are intended to prevent excessive plastic deformation leading to incremental collapse, and to validate the application of the elastic analysis when performing the fatigue evaluation.(c) The peak stress limit is intended to prevent fatigue failure as a result of cyclic loading. (d) Special stress limits are provided for elastic and inelastic instability.Protection against brittle fracture are provided by material selection, rather than by analysis. Protection against environmental conditions such as corrosion and radiation effects are the responsibility of the designer. The creep and stress rupture temperature range will be considered in later condition. 应力类型压力容器设计者遇到的多种可能的失效形式:(1) 过度弹性变形包括弹性失稳。(2) 过度塑性变性。(3)(4)(5)(6) 脆性断裂。 应力断裂/蠕变变形(非弹性的)。 塑性不稳性增加失稳。 高应变低周期疲劳。(7) 应力腐蚀。(8) 疲劳腐蚀。在处理这些不同的失效形式上,我们假设设计者在局部问题的处理上,有一副应力状态图。这需要通过对机械和热应力的计算或测量来得到,它们(应力)在短暂稳定的状态操作期间,存在于整个容器中。有人会问,这些数据与设计的合理性有什么关系?它们能确保一个构件的安全和满意的性能吗?它与这些各种各样的失效形式对立,压力容器设计者必须比较和说明应力值。例如,通过单独计算应力来强加上限,是不能控制弹性变形和弹性
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!