LC在步进电机控制中的应用.doc

上传人:wux****ua 文档编号:8717729 上传时间:2020-03-31 格式:DOC 页数:36 大小:471.50KB
返回 下载 相关 举报
LC在步进电机控制中的应用.doc_第1页
第1页 / 共36页
LC在步进电机控制中的应用.doc_第2页
第2页 / 共36页
LC在步进电机控制中的应用.doc_第3页
第3页 / 共36页
点击查看更多>>
资源描述
PLC在步进电机控制中的应用作者:xx摘要:随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家用提高设备的抗干扰能力,另一方面要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电动机迅速地发展并成熟起来。从发展趋向来讲、步进电动机已经能与直流电动机、异步电动机,以及同步电动机并列,从而成为电动机的一种基本类型。用PLC控制步进电机越来越流行了,这将是大势所趋的事情。关键字:PLC,控制系统,步进电机,应用,电动机【Abstract】: With the development of science and technology, PLC control in the industry wider and wider application. PLC control system reliability directly affects the safety of industrial enterprises and economic operation, the system of anti-interference ability is related to the reliable operation of the system key. Automated systems used in all types of PLC, some are installed in the control room concentrate, some installed in production sites and electrical equipment, they are mostly in strong and strong electrical equipment circuit is formed by heavy electromagnetic environment. PLC control system to improve reliability, while requests to use PLC manufacturers improve equipment in the anti-jamming capability, on the other hand to require design, installation and construction and use of maintenance of attach great importance to multi-Peihecaineng, effectively enhance the system anti-interference performance. Stepper motor is able to convert digital input pulse incremental rotary or linear motion electromagnetic actuator. Each input of a pulse motor shaft of a step angle stepping increment. Motor back to the corner and enter the total number of pulses proportional to the corresponding speed depends on the input pulse frequency. Stepper motor is a key component in mechatronic product, one is often used as a positioning control and constant speed control. Stepper motor quickly develop and mature. From the development trend of speaking, the stepper motor has been with DC motor, induction motor, and the parallel synchronous motor, making it one of the basic types of motors. PLC controlled stepper motor with more and more popular, it will be the general trend of things. 【Key words】: PLC,control System,stepping Motor,application,electric motor目 录第1章 PLC控制系统硬件原理及选取21.1 PLC简介21.2 PLC内部原理31.3 PLC的工作原理61.4 PLC机型的选择方法9第2章 步进电动机驱动器基本原理及选取112.1 步进电动机驱动器基本原理112.2 步进电机驱动器选取方法152.3 步进电机驱动器选取16第3 章步进电动机基本原理及选取223.1 步进电机简介223.2 步进电动机的发展历史223.3 步进电机的一些基本参数233.4 步进电机的选择方法24第4章 接近开关284.1 工作原理284.2 接近开关的工作流程28第5章 PLC控制系统优点295.1 PLC控制系统的优点295.2 PLC控制步进电机原理介绍31结 束 语33参 考 文 献34第1章 PLC控制系统硬件原理及选取1.1 PLC简介自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。同时,PLC的功能也不断完善。随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。作为离散控的制的首选产品,PLC在二十世纪八十年代至九十年代得到了迅速发展,世界范围内的PLC年增长率保持为20%30%。随着工厂自动化程度的不断提高和PLC市场容量基数的不断扩大,近年来PLC在工业发达国家的增长速度放缓。但是,在中国等发展中国家PLC的增长十分迅速。综合相关资料,2004年全球PLC的销售收入为100亿美元左右,在自动化领域占据着十分重要的位置。 PLC是由摸仿原继电器控制原理发展起来的,二十世纪七十年代的PLC只有开关量逻辑控制,首先应用的是汽车制造行业。它以存储执行逻辑运算、顺序控制、定时、计数和运算等操作的指令;并通过数字输入和输出操作,来控制各类机械或生产过程。用户编制的控制程序表达了生产过程的工艺要求,并事先存入PLC的用户程序存储器中。运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。PLC的CPU内有指示程序步存储地址的程序计数器,在程序运行过程中,每执行一步该计数器自动加1,程序从起始步(步序号为零)起依次执行到最终步(通常为END指令),然后再返回起始步循环运算。PLC每完成一次循环操作所需的时间称为一个扫描周期。不同型号的PLC,循环扫描周期在1微秒到几十微秒之间。PLC用梯形图编程,在解算逻辑方面,表现出快速的优点,在微秒量级,解算1K逻辑程序不到1毫秒。它把所有的输入都当成开关量来处理,16位(也有32位的)为一个模拟量。大型PLC使用另外一个CPU来完成模拟量的运算。把计算结果送给PLC的控制器。相同I/O点数的系统,用PLC比用DCS,其成本要低一些(大约能省40%左右)。PLC没有专用操作站,它用的软件和硬件都是通用的,所以维护成本比DCS要低很多。一个PLC的控制器,可以接收几千个I/O点(最多可达8000多个I/O)。如果被控对象主要是设备连锁、回路很少,采用PLC较为合适。PLC由于采用通用监控软件,在设计企业的管理信息系统方面,要容易一些。 近10年来,随着PLC价格的不断降低和用户需求的不断扩大,越来越多的中小设备开始采用PLC进行控制,PLC在我国的应用增长十分迅速。随着中国经济的高速发展和基础自动化水平的不断提高,今后一段时期内PLC在我国仍将保持高速增长势头。 通用PLC应用于专用设备时可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而方具有更高的可靠性和更好的稳定性。实际工作中碰到的一些用户原来采用嵌入式控制器,现在正逐步用通用PLC或定制PLC取代嵌入式控制器。1.2 PLC内部原理PLC实质上是一种被专用于工业控制的计算机,其硬件结构和微机是基本一至。如图2.1a PLC硬件的基本结构图所示:编程器中央处理单元(CPU)输入电路输出电路系统程序存储区用户程序存储区电源1-1a PLC硬件的基本结构图(1)中央处理单元(CPU):中央处理单元(CPU)是PLC 的控制中枢。它按照PLC系统程序赋予的功能,接受并存储从编程器键入的用户程序和数据,检查电源、存储器、I/O以及警戒定时器的状态,并能检查用户程序的语法错误。当PLC投入运行时,首先它以扫描的方式接受现场各输入装置的状态和数据,并分别存入I/O映象区, 然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算术运算等任务。并将逻辑或算术运算等结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕以后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行为止。(2)存储器:与微型计算机一样,除了硬件以外,还必须有软件。才能构成一台完整的PLC。PLC的软件分为两部分: 系统软件和应用软件。存放系统软件的存储器称为系统程序存储器。PLC存储空间的分配:虽然大、中、小型 PLC的CPU的最大可寻址存储空间各不相同,但是根据PLC的工作原理, 其存储空间一般包括以下三个区域:系统程序存储区,系统RAM存储区(包括I/O映象区和系统软设备等)和用户程序存储区。系统程序存储区:在系统程序存储区中存放着相当于计算机操作系统的系统程序。它包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断程序等。由制造厂商将其固化在EPROM中,用户不能够直接存取。它和硬件一起决定了该PLC的各项功能。系统RAM存储区:系统RAM存储区包括I/O映象区以及各类软设备(例如:逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器等)存储区。I/O映象区:由于PLC投入运行后,只是在输入采样阶段才依次读入各输入状态和数据,在输出刷新阶段才将输出的状态和数据送至相应的外设。因此,它需要有一定数量的存储单元(RAM)以供存放I/O的状态和数据,这些存储单元称作I/O映象区。一个开关量I/O占用存储单元中的一个位(bit), 一个模拟量I/O占用存储单元中的一个字(16个bit)。因此,整个I/O映象区可看作由开关量的I/O映象区和模拟量的I/O映象区两部分组成。系统软设备存储区:除了I/O映象区以外,系统 RAM存储区还包括PLC内部各类软设备(逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器等)的存储区。该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前者在PLC断电时,由内部的锂电子供电。使这部分存储单元内的数据得以保留;后者当PLC停止运行时,将这部分存储单元内的数据全部置“零”。用户程序存储区 :用户程序存储区存放用户编制的用户程序。不同类型的PLC其存储容量各不相同,一般来说,随着PLC机型增大其存储容量也相应增大。不过对于新型的PLC,其存储容量可根据用户的需要而改变。常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。除了上述通用I/O外,还有特殊I/O模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。(3)PLC电源:PLC电源在整个系统中起着十分重要的作用。无论是小型的PLC,还是中、大型的PLC,其电源的性能都是一样的,均能对PLC内部的所有器件提供一个稳定可靠的直流电源。一般交流电压波动在正负10%(15%)之间,因此可以直接将PLC接入到交流电网上去。可编程序控制器一般使用220V交流电源。可编程序控制器内部的直流稳压电源为各模块内的元件提供直流电压。某些可编程序控制器可以为输入电路和少量的外部电子检测装置(如接近开关)提供24V直流电源。驱动现场执行机构的电源一般由用户提供。可编程序控制器是从继电器控制系统发展而来的,它的梯形图程序与继电器系统电路图相似,梯形图中的某些编程元件也沿用了继电器这一名称,如输入、输出继电器等。这种计算机程序实现的“软继电器”,与继电器系统中的物理结构在功能上某些相似之处。1. 3 PLC的工作原理图1-1b可编程序控制器有两种基本的工作状态,即运行(RUN)状态与停止(STOP)状态。在运行状态,可编程控制器通过执行反映控制要求的用户程序来实现控制功能。为了使可编程序控制器的输出及时地响应随时可能变化的输入信号,用户程序不是只执行一次,而是反复不断地重复执行,直至可编程序控制器停机或切换到STOP工作状态。除了执行用户程序之外,在每次循环过程中,可编程序控制器还要完成,内部处理、通信处理等工作,一次循环可分为5个阶段。可编程序控制器的这种周而复始的循环工作方式称为扫描工作方式。由于计算机执行指令的速度极高,从外部输入-输出关系来看,处理过程似乎是同时完成的。在内部处理联合阶段。可编程序控制器检查CPU模块内部的硬件是否正常,将监控定时器复位,以及完成一些别的内部工作。在通信服务阶段,可编程序控制器与别的带微处理器的智能装置通信,响应编程器键入的命令,更新编程器的显示内容。当可编程序控制器处于停止(STOP)状态时,只执行以上的操作。可编程序控制起处于(RUN)状态时,还要完成另外3个阶段的操作。在可编程序控制器的存储器中,设置了一片区域用来存放输入信号和输出信号的状态,它们分别称为输入映像寄存器和输出映像寄存器。可编程序控制器梯形图中别的编程元件也有对应的映像存储区,它们统称为元件映像寄存器。在输入处理阶段,可编程序控制器把所有外部输入电路的接通/断开(ON/OFF)状态读入输入寄存器。外接的输入触点电路接通时,对应的输入映像寄存器为“1”状态,梯形图中对应的输入继电器的常开触点接通,常闭触点断开。外接的输入触点电路断开,对应的输入映像寄存器为“0”状态,梯形图中对应的输入继电器的常开触点断开,常闭触点接通。在程序执行阶段,即使外部输入信号的状态发生了变化,输入映像寄存器的状态 也不会随之而变,输入信号变化了的状态只能在下一个扫描周期的输入处理阶段被读入。可编程序控制器的用户程序由若干条指令组成,指令在存储器中按步序号顺序排列。在没有跳转指令时,CPU从第一条指令开始,逐条顺序的执行用户程序,直到用户程序结束之处。在执行指令时,从输入映像寄存器或别的元件映像寄存器中将有关编程元件的0/1状态读出来,并根据指令的要求执行相应的逻辑运算,运算结果写入到对应的元件映像寄存器中,因此,各编程元件的映像寄存器(输入映像寄存器除外)的内容随着程序的执行而变化。在输出处理阶段,CPU 将输出映像寄存器的0/1状态传送到输出锁存器。体型图某一输出继电器的线圈“通电”时,对应的输出映像寄存器为“1”状态。信号经输出模块隔离 和功率放大后,继电器型输出模块中对应的硬件继电器的线圈通电,其常开触点闭合,使外部负载通电工作。若梯形图中输出继电器线圈断电对应的输出映像寄存器为“0”状态,在输出处理阶段后,继电器型输出模块中对应的硬件继电器的线圈断电,其常开触点断开,外部负载断电,停止工作。某一编程元件对应的映像寄存器为“1”状态时,称该编程元件为ON,映像寄存器为“0”状态时,称该编程元件为OFF。扫描周期可编程序控制器在RUN工作状态时,执行一次图2.5.1a所示的扫描操作所需的时间称为扫描周期,其典型值为1100ms。指令执行所需的时间与用户程序的长短、指令的种类和CPU执行指令的速度有很大的关系。当用户程序较长时,指令执行时间在扫描周期中占相当大的比例。不过严格地来说扫描周期还包括自诊断、通信等。如图2-1c所示。第(N-1)个扫描周期输出刷新第(N+1)个扫描周期输入采样第N个扫描周期输入采样输出刷新用户程序执行图1-1c PLC的扫描运行方式(1)输入采样阶段在输入采样阶段,PLC以扫描方式依次读入所有的数据和状态它们存入I/O映象区的相应单元内。输入采样结束后,转入用户程序行和输出刷新阶段。在这两个阶段中,即使输入数据和状态发生变化I/O映象区的相应单元的数据和状态也不会改变。所以输入如果是脉冲信号,它的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。(2)用户程序执行阶段在用户程序执行阶段,PLC的CPU总是由上而下,从左到右的顺序依次的扫描梯形图。并对控制线路进行逻辑运算,并以此刷新该逻辑线圈或输出线圈在系统RAM存储区中对应位的状态。或者确定是否要执行该梯形图所规定的特殊功能指令。例如:算术运算、数据处理、数据传达等。(3)输出刷新阶段在输出刷新阶段,CPU按照I/O映象区内对应的数据和状态刷新所有的数据锁存电路,再经输出电路驱动响应的外设。这时才是PLC真正的输出。(4)输入/输出滞后时间输入/输出滞后时间又称系统响应时间,是指可编程序控制器的外部输入信号发生变化的时刻至它控制的有关外部输出信号发生变化的时刻之间的时间间隔,它由输入电路滤波时间、输出电路的滞后时间和因扫描工作方式产生的滞后时间三部分组成。输入模块的CPU滤波电路用来滤除由输入端引入的干扰噪声,消除因外接输入触点动作是产生的抖动引起的不良影响,滤波电路的时间常数决定了输入滤波时间的长短,其典型值为10ms左右。输出模块的滞后时间与模块的类型有关,继电器型输出电路的滞后时间一般在10ms左右;双向可空硅型输出电路在负载接通时的滞后时间约为1ms,负载由导通到断开时的最大滞后时间为10ms;晶体管型输出电路的滞后时间约为1ms。由扫描工作方式引起的滞后时间最长可达到两个多扫描周期。可编程序控制器总的响应延迟时间一般只有几十ms,对于一般的系统是无关紧要的。要求输入输出信号之间的滞后时间尽量短的系统,可以选用扫描速度快的可编程序控制器或采取其他措施。1.4 PLC机型的选择方法(1)PLC的类型PLC按结构分为整体型和模块型两类,按应用环境分为现场安装和控制室安装两类;按CPU字长分为1位、4位、8位、16位、32位、64位等。从应用角度出发,通常可按控制功能或输入输出点数选型。整体型PLC的I/O点数固定,因此用户选择的余地较小,用于小型控制系统;模块型PLC提供多种I/O卡件或插卡,因此用户可较合理地选择和配置控制系统的I/O点数,功能扩展方便灵活,一般用于大中型控制系统。(2)输入输出模块的选择输入输出模块的选择应考虑与应用要求的统一。例如对输入模块,应考虑信号电平、信号传输距离、信号隔离、信号供电方式等应用要求。对输出模块,应考虑选用的输出模块类型,通常继电器输出模块具有价格低、使用电压范围广、寿命短、响应时间较长等特点;可控硅输出模块适用于开关频繁,电感性低功率因数负荷场合,但价格较贵,过载能力较差。输出模块还有直流输出、交流输出和模拟量输出等,与应用要求应一致。可根据应用要求,合理选用智能型输入输出模块,以便提高控制水平和降低应用成本。考虑是否需要扩展机架或远程I/O机架等。(3)电源的选择PLC的供电电源,除了引进设备时同时引进PLC应根据产品说明书要求设计和选用外,一般PLC的供电电源应设计选用220VAC电源,与国内电网电压一致。重要的应用场合,应采用不间断电源或稳压电源供电。如果PLC本身带有可使用电源时,应核对提供的电流是否满足应用要求,否则应设计外接供电电源。为防止外部高压电源因误操作而引入PLC,对输入和输出信号的隔离是必要的,有时也可采用简单的二极管或熔丝管隔离。(4)存储器的选择由于计算机集成芯片技术的发展,存储器的价格已下降,因此,为保证应用项目的正常投运,一般要求PLC的存储器容量,按256个I/O点至少选8K存储器选择。需要复杂控制功能时,应选择容量更大,档次更高的存储器。5.冗余功能的选择a控制单元的冗余a.a重要的过程单元:CPU(包括存储器)及电源均应1B1冗余。a.b在需要时也可选用PLC硬件与热备软件构成的热备冗余系统、2重化或3重化冗余容错系统等。b I/O接口单元的冗余b.a控制回路的多点I/O卡应冗余配置。b.b重要检测点的多点I/O卡可冗余配置。b.c根据需要对重要的I/O信号,可选用2重化或3重化的I/O接口单元。(6)经济性的考虑选择PLC时,应考虑性能价格比。考虑经济性时,应同时考虑应用的可扩展性、可操作性、投入产出比等因素,进行比较和兼顾,最终选出较满意的产品。输入输出点数对价格有直接影响。每增加一块输入输出卡件就需增加一定的费用。当点数增加到某一数值后,相应的存储器容量、机架、母板等也要相应增加,因此,点数的增加对CPU选用、存储器容量、控制功能范围等选择都有影响,在估算和选用时应充分考虑,使整个控制系统有较合理的性能价格比。第2章 步进电动机驱动器基本原理及选取2.1 步进电动机驱动器基本原理步进电机的运行要有一电子装置进行驱动, 这种装置就是步进电机驱动器, 它是把控制系统发出的脉冲信号,加以放大以驱动步进电机。步进电机的转速与脉冲信号的频率成正比,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位。 典型的步进电机驱动控制系统主要由三部分组成: 1. 步进控制器,由PLC实现。2驱动器,把PLC输出的脉冲加以放大,以驱动步进电机。3步进电机步进电机的电枢通断和各相通电顺序决定了输出角位移和运动方向,控制脉冲分配频率可实现步进电机的速度控制。因此。步进电机控制系统一般采用开环控制方式。1)环形分配器步进电机在一个脉冲的作用下,转过一个相应的步距角,因此只要控制一定的脉冲数,即可精确控制步进电机转过的相应的角度。但步进电机的各绕组必须按一定的顺序通电才能正确工作,这种使用电机绕组的通断电顺序按输入脉冲的控制而循环变化的过程称为环形分配。实现环形分配的方法有两种。一种是计算机软件分配,采用查表或计算的方向使计算机的三个输出引脚依次输出满足速度和方向要求的环形分配脉冲信号。这种方法能充分利用计算机软件资源,减少硬件成本,尤其是多相电机的脉冲分配更能显示出这种分配方法的优点。但由于软件运行会占用计算机的运行时间,因而会使插补运算的总时间增加,从而影响步进电机的运行速度。另一种是硬件环形分配,采用数字电路搭建或专用的环形分配器件将连续的脉冲信号经电路处理后输出环形脉冲。采用数字电路搭建的环形分配器通常由分立元件(如触发器,逻辑门等)构成,特点是体积大,成本高,可靠性差。专用的环形分配器目前市面上有很多种,如CMOS电路CH250即为三相步进电机的专用环形分配,它的引脚功能及三相六拍线路图如图2-1a所示。这种分配方法的优点是使用方便,接口简单。(a)引脚功能图 (b)三相六拍线路图图2-1a 环形分配器CH250引脚图2)功率驱动要使步进电机能输出足够的转矩以驱动负载工作,必须为步进电机提供足够功率的控制信号,实现这一功能的电路称为步进电机驱动电路。驱动电路实际上是一个功率开关电路,其功能是将环形分配的输出信号进行功率放大,得到步进电机控制绕组所需要的脉冲电流及所需要的脉冲波形。步机的工作特性在很大的程度上取决于功率驱动器的性能,对每一相绕组来说,理想的功率驱动器应使通过绕组的电流脉冲尽量接近矩形波。但由于步进电机绕组有很大的电感,要做到这一点是有困难的。常见的步进电机驱动电路有三种:1)单电源驱动电路。这种电路采用单一电源供电,结构简单,成本低,但电流波形差,效率低,输出力矩小,主要用于对速度要求不高的小型步进电机的驱动。图2-1b所示为步进电机的一相绕组驱动电路(每相绕组的电路相同)。当环形分配器的脉冲输入信号uU为低电平(逻辑0,约1V)时,虽然V1,V2管都导通,但只要适当选择R1,R3,R5的阻值,使Ub30(约为0.7V),V3管饱和导通,该相绕组通电。图2-1b 单电源驱动电路 2)双电源驱动电路。双电源驱动电路又称高,低压驱动电路,采用高压和低压两个电源供电,如图2-1c所示。在步进电机绕组刚接通时,通过高压电源供电,以加快电流上升速度;延迟一段时间后,切换到低压电源供电。这种电路使用电流波形,输出转矩及运行频率等都有较大的改善。图2-1c 高低压驱动电路 当环形分配器的脉冲输入信号uU为高电平时(要求该相绕组通电),二极管Vg,Vd的基极都有信号电压输入,使Vg,Vd均导通。于是在高压电源作用下(这时二极管VD1两端承受的是反向电压,处于截止状态,可使低压电源不对绕组作用),绕组电流迅速上升,电流前沿很陡。当电流达到或稍微超过额定稳态电流时,利用定时电路或电流检测器等措施切断Vg基极上的信号电压,于是Vg截止,但此时Vd仍然是导通的,因此绕组电流即转而由低压电源经过二极管VD1供给。当环形分配器输出端的电压uU为低电平时(要求绕组断电),Vd基极上的信号电压消失,于是Vd截止,绕组中的电流经二极管VD2及电阻Rf2向高压电源供电,电流迅速下降。采用这种高,低压切换型电源,电机绕组上不需要串联电阻或者需要串联一个很小的电阻Rf1(为平衡各相电流),因此电源的功耗较小。由于这种供压方式使电流波形得到很大的改善,因而步进惦记的矩频特性好,启动和运行频率得到很大的提高。3)斩波限流驱动电路。这种电路采用单一高压电源供电,以加快电流上升速度,并通过对绕组电流的检测,控制功放管的开和关,使电流在控制脉冲持续期间始终保持在规定值上下,其波形图如图2-1d所示。这种电路功率大,功耗小,效率高,目前应用最广。2-1d 斩波限流驱动电路波形图图2-1e所示为一种斩波限流驱动电路原理图,其工作原理如下:当环形分配器的脉冲输入高电平(要求该相绕组通电)加载到光电耦合器OT的输入端时,晶体管V1导通,并使V2和V3也导通。V2导通瞬间,脉冲变压器T在其二次线圈中感应出一个正脉冲,使大功率晶体管V4也通。同时由于V3的导通,大功率晶体管V5也导通。于是绕组W中有电流流过,步进电机旋转。由于W是感性负载,其中的电流在导通后逐渐增加,当增加到一定值时,在检测电阻R10上产生的压降将超过由分压电阻R7和电阻R8所设定的电压值Uref,使比较器OP翻转,输出低电平使V2截止。V2被截止瞬时,又通过T将一个负脉冲交连到二次线圈,使V4截止。于是电源通路被切断,W中储存的能量通过V5,R10及二极管VD7释放,电流逐渐减小。当电流减小到一定值后,在R10上的压降又低于Uref,使OP输出高电平,V2,V4及W重新导通。在控制脉冲持续期间,上述过程不断重复。当输入低电平时,V1V5等相继截止,W中的能量则通过VD6,电源,地和VD7释放。该电路限流值可达6A左右,改变电阻R10或R8的值,可改变限流值的大小。图2-1e 斩波限流驱动电路2.2 步进电机驱动器选取方法1.首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。或者根据负载特性从理论上计算出来。由于步进电机是控制类电机,所以目前常用步进电机的最大力矩不超过45Nm,力矩越大,成本越高,如果您所选择的电机力矩较大或超过此范围,可以考虑加配减速装置。 2.确定步进电机的最高运行转速。转速指标在步进电机的选取时至关重要,步进电机的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机大小等等,一般的规律是:驱动电压越高,力矩下降越慢;电机的相电流越大,力矩下降越慢。在设计方案时,应使电机的转速控制在1500转/分或1000转/分,当然这样说很不规范,可以参考矩-频特性。3.根据负载最大力矩和最高转速这两个重要指标,再参考矩-频特性,就可以选择出适合自己的步进电机。如果您认为自己选出的电机太大,可以考虑加配减速装置,这样可以节约成本,也可以使您的设计更灵活。要选择好合适的减速比,要综合考虑力矩和速度的关系,选择出最佳方案。 4.最后还要考虑留有一定的(如30%)力矩余量和转速余量。5.可以先选择混合式步进电机,如果由于价格因素,可以选取反应式步进电机 6.尽量选取细分驱动器,且使驱动器工作在细分状态。 7.选取时且勿走入只看电机力矩这一个指标的误区,也就是说并非电机的扭矩越大越好,要和速度指标一起考虑。 8.超小型驱动器和微型驱动器是靠外壳作为散热器的,应固定在较大、较厚的金属板上或外加风机散热,如果没有散热条件,而驱动器又工作在转速较低的场合(这时驱动器发热较大)。2.3 步进电机驱动器选取综上所述本系统采用的是两相混合式步进电机细分驱动器 SH-20803N技术特点:全新的双极恒相流加细分控制模式 创新的动态寻优电路使性能最优化 最大64细分的多种细分模式可选 提供在线细分切换功能 24V70V直流供电 最大输出驱动电流3A/相 输入信号TTL兼容且光电隔离 输出电流可方便设定 过流、过压、错相保护 脱机保持功能 精巧的外形尺寸便于安装概述本驱动器在继承以往驱动器细分技术的基础上,引入了全新的动态智能电流控制技术,从而大大改善了电机电流的控制精度,进一步降低了力矩的脉动,提高了细分的精度,并且可以将电机的损耗降低30%,达到减小电机温升的效果。更宽的电压电流范围可以满足更多的应用场合,通过动态智能控制模式可以根据实际的运行工况寻得最优的控制方式,方便的电流设定功能方便适配多种型号电机。电气特性(环境温度Tj=25时)使用环境及参数电源电压本驱动器采用直流电源供电,由机壳正面的红色指示灯指示。电源电压在DC24VDC70V之间都可以正常工作,用户可以直接采用变压器整流加电容滤波电路提供。但注意应使整流后电压纹波峰值不超过70V。考虑到电网电压的波动,变压器副边空载输出电压建议小于50VAC。采用较低的电源电压会使电机高速运行力矩下降,但有助于驱动器降低温升和增加低速时的运行平稳性(请参考适配电机矩频特性曲线)。所加电源的输出能力应不少于电机的额定相电流,电源电压越低则对电源电流输出能力的要求越大。接线时务必注意电源正负,切勿反接!电源质量的好坏直接影响到驱动器的性能和功能,电源的纹波大小影响细分的精度,电源共模干扰的抑制能力影响系统的抗干扰性,因此对于要求较高的应用场合,一定要注意提高电源的质量。输出电流选择本驱动器采用双极恒流方式,最大输出电流值为3A/相(峰值),根据驱动器侧板开关(4,5,6)的不同组合可以方便的选择8种电流值,从1.5A到3.1A(详见电流选择表),细分选择本驱动器有A、B两种类型,每种类型各提供8种细分运行模式。对于A型,可提供整步、半步(优化半步)、4细分、8细分、16细分、32细分、64细分模式;对于B型,可提供整步、半步、4细分、5细分、8细分、10细分、20及40细分模式。驱动器出厂时,面板上会有类型标注。8种细分模式用户既可通过侧板开关(1,2,3)方便设定(详见细分模式选择表)也可以使用端子上提供的MS1,MS2,MS3三个接口由系统选择(详见在线细分切换)。细分步数均相对整步而言,如驱动整步为1.8度电机,设定整步运行时,一个脉冲使电机转动1.8度,半步时,一个脉冲使电机转动0.9度,4细分时一个脉冲则使电机转动0.45度在线细分切换可以通过驱动器面板上的拨码开关选择细分模式,共有8种模式备选,同样也可以通过在输入信号选择端子上加对应的电信号完成同样的功能,信号端子和细分选择开关一一对应(例如:MS1对应细分选择开关1),细分选择开关闭合(ON-拨码开关置于“0”侧)等效于对应的输入信号端子输入低电位(内部光耦导通),当开关设定和端子的信号不一致时,以端子低电平和开关闭合为优先。因此要完全使用输入信号端子控制细分,请将细分选择开关的1,2,3位设置为全OFF状态。为了降低细分驱动器对控制系统输出高频率范围的要求,同时降低控制的复杂性,在保证精度的前提下,本驱动器提供了各个运行模式之间的在线自由切换,用户可以通过控制信号自由决定所使用的细分数,并在运行中随时切换。值得注意的是:若在不停止脉冲输入的情况下进行细分模式的动态切换,由于细分的差异,同样的输入脉冲频率会对应不同的电机转速,因此当由高细分切换到低细分或整步时,若不相应调整脉冲频率,就会使电机转速突然以倍数上升,这种状况可能导致电机丢步或堵转,所以动态切换细分时要注意相应的调整脉冲频率,以保持切换前后,电机转速的平稳过渡。对于静态(电机静止或转速极低)下的切换就比较简单了。脱机功能脱机控制端外加低电平时,驱动器将切断电机各相绕组电流使电机轴处于自由状态,此时步进脉冲将不能被响应。此状态可有效降低驱动器和电机的功耗和温升。当不需用此功能时,脱机端可悬空。动态寻优本驱动器中包含独创的动态寻优电路,它可以根据当前电机的工作状况作出相应的调整,以达到最优的运行效果。要注意的是该电路需要5秒左右的初始化过程,因此在刚上电的几秒内,效果可能不理想,几秒后就会恢复。用户可以避开这段时间。错相保护两相电机与驱动器连接时,极易接错相,从而严重损坏驱动器。本驱动器设计了错相保护电路,用户接错相时,驱动器不会损坏,但电机运行不正常,主要表现在出力极小。遇此情况,应检查电机接线是否错误。电机接线本驱动器的设计为配合两相混合式步进电机使用,所采用的是双极恒流的控制方式,可以最大限度的利用电机的铁磁材料。可以配合4线,6线及8线的电机使用。对于8线的电机在电流允许的前提下,可以接成串联或并联方式使用。要特别提出注意的是,本驱动器不能配合5线两相电机使用!输入信号驱动器的信号输入采用可拔插的端子,可以将其取下,接好线后再插上。公共端:本驱动器的输入信号采用共阳极接线方式,应将控制信号的正电源连接到该端子上,信号输出线连接到相应的信号端子上,当信号输入端出现低电平时相对应的内部光耦开通,将信号输入驱动器中。脉冲信号输入:信号从高到低的下跳变被驱动器解释为一个脉冲,此时驱动器将按照相应的时序驱动电机运行一步。脉冲低电平的持续时间不应少于300ns。本驱动器的信号最高响应频率为2MHz,过高的输入频率将可能得不到正确响应。 方向信号输入:该端的高电平和低电平被解释为电机运行的两个方向,信号的改变将使电机运行的方向发生变化。该端的悬空被等效认为输入高电平。要注意一点是,应确保方向信号领先脉冲信号输入至少10s建立,从而避免驱动器对脉冲的错误响应。当不需换向时,方向信号端可悬空。脱机信号输入:输入低电平时电机相电流被切断,转子处于自由状态。不用此功能时脱机信号端可悬空。细分选择信号:这三个端子实现通过上位控制机输出信号设定细分模式和细分模式的在线自动切换功能,端子外加低电平时内部的光耦导通,等同于对应的细分选择拨码开关置于ON侧。正确使用此功能的详细介绍请参见上页在线细分选择中的说明。要注意一点是,应确保细分选择信号领先于脉冲信号输入至少10s建立,从而避免驱动器对脉冲的错误响应。当不需用此功能时,细分选择信号端可悬空。典型接线图输入接口电路第3 章步进电动机基本原理及选取3.1 步进电机简介步进电动机又称脉冲电动机或阶跃电动机,国外一般称为5kpmotor或SvpI)m8motor、Pulscnlot赃、Stdppcr5Grvo、StcPl)er,等等。目前,随着电子技术、控制技术以及电动机本体的发展和变化,传统电机分类间的界面越来越模糊。笔者认为这是机电一体化元件组件的必然趋势。就传统的步进电功价来说、步进电动机可以简单地定义为根据输入的脉冲信号,每改变一次励磁状态就前进定角度(或长度),若不改变励磁状态则保持一定位置而静止的电动机。从广义上讲,步进电动机是一种受电脉冲信号控制的无刷式直流电动机也可看作是在一定频率范围内转速与控制脉冲频率同步的同步电动机。3.2 步进电动机的发展历史步进电动机的机理是基于最基本的电磁铁作用、其原始模型起源于1830年至1860年间。1870午前后开始以控制为目的的尝试、应用于氮弧灯的电极输送机构中。这被认为是最初的步进电动机。此后,在电话自动交换机中广泛使用了步进电动机。不久又在缺乏交流电源的船舶和飞机等独立系统中广泛使用。20世纪60年代后期,在步进电动机本体方面随着水磁材料的发展,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30年间步进电动机迅速地发展并成熟起来。从发展趋向来讲、步进电动机已经能与直流电动机、异步电动机,以及同步电动机并列,从而成为电动机的一种基本类型。我国步进电动机的研究及制造起始于本世纪50年代后期。从50年代后期到60年代后期,主要是高等院校和科研机构为研究一些装置而使用或开发少量产品。这些产品以多段结构三相反应式步进电动机为主。70年代初期,步进电动机的生产和研究有所突破。除反映在驱动器设计方面的长足进步外,对反应式步进电动机本体的设计研究发展到一个较高水平。70年代中期至80年代中期为成品发展阶段,新品种高性能电动机不断被开发。自80年代中期以来,由于对步进电动机精确模型做了大量研究工作,各种混合式步进电动机及驱动器作为产品广泛利用。3.3步进电机的一些基本参数电机固有步距角: 它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9/1.8(表示半步工作时为0.9、整步工作时为1.8),这个步距角可以称之为电机固有步距角,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。步进电机的相数: 是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9/1.8、三相的为0.75/1.5、五相的为0.36/0.72 。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱动器,则相数将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。保持转矩(HOLDING TORQUE):是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。DETENT TORQUE:是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。步进电机的一些特点:1一般步进电机的精度为步进角的3-5%,且不累积。2步进电机外表允许的最高温度。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。3步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。4步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。3.4 步进电机的选择方法步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度 (三相电机)等。2、静力矩的选择步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)3、电流的选择静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压) 综上所述选择电机一般应遵循以下步骤: 步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。 字串3 选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。选择步进电机需要进行以下计算计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(.S)/(360.)(1-1)式中 -步进电机的步距角(/脉冲) S-丝杆螺距(mm) -(mm/脉冲)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。Jt=J1+(1/i)(J2+Js)+W/g(S/2)(1-2) 式中Jt-折算至电机轴上的惯量(Kg.cm.s)J1、J2-齿轮惯量(Kg.cm.s)Js-丝杆惯量(Kg.cm.s)W-工作台重量(N)S-丝杆螺距(cm)计算电机输出的总力矩MM=Ma+Mf+Mt(1-3)Ma=(Jm+Jt).n/T1.0210(1-4)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!