资源描述
错解剖析得真知(十) 3.4三角函数的图象与性质一、知识导学1.三角函数线.设角的终边与单位圆交于点,过点做轴于,过点做单位圆的切线,与角的终边或终边的反向延长线相交于点,则有向线段分别叫做角的正弦线,余弦线,正切线.2.三角函数的图象(1)四种图象(2)函数的图象“五点作图法”图象变化规律3.三角函数的定义域、值域及周期4.三角函数的奇偶性和单调性二、疑难知识导析1.+中,及,对正弦函数图象的影响,应记住图象变换是对自变量而言.如:向右平移个单位,应得,而不是2.用“五点法”作图时,将看作整体,取,来求相应的值及对应的值,再描点作图.3.的图象既是中心对称图形,又是轴对称图形.而图象只是中心对称图形,掌握对称中心和对称轴的求法及位置特征,充分利用特征求出中的各个参数.4.三角函数的定义域是研究其它一切性质的前提.求定义域实质上是解简单的三角不等式(组).要考虑到分母不为零,偶次根式被开方数不小于零,对数的真数大于零、底数大于零且不等于1,同时还要考虑到函数本身的定义域.可用三角函数图象或三角函数线解不等式(组).5.求三角函数的值域是常见题型.一类是型,这要变形成;二是含有三角函数复合函数,可利用换元、配方等方法转换成一元二次函数在定区间上的值域.6.单调性的确定,基本方法是将看作整体,如求增区间可由解出的范围.若的系数为负数,通常先通过诱导公式处理. 7.利用单调性比较函数值的大小.往往先利用对称型或周期性转化成同一单调区间上的两个同名函数.三、典型例题导讲例1 为了得到函数的图象,可以将函数的图象( ) A 向右平移 B 向右平移 C 向左平移 D向左平移错解:A错因:审题不仔细,把目标函数搞错是此题最容易犯的错误.正解:B例2 函数的最小正周期为( )A B C D错解:A错因:将函数解析式化为后得到周期,而忽视了定义域的限制,导致出错.正解:B例3下列四个函数y=tan2x,y=cos2x,y=sin4x,y=cot(x+),其中以点(,0)为中心对称的三角函数有( )个. A1 B2 C3 D4错解:B错因:对三角函数图象的对称性和平移变换未能熟练掌握.正解:D 例4函数为增函数的区间是 ( )A. B. C. D. 错解:B错因:不注意内函数的单调性.正解: C例5函数的最大值为_.解: 例6 函数的部分图象是( )解:选D.提示:显然 例7 当 A. 最大值为1,最小值为-1 B. 最大值为1,最小值为 C. 最大值为2,最小值为 D. 最大值为2,最小值为解:选D解析:,而 例8已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图所示. (1)求函数在的表达式; (2)求方程的解.解:(1)当时,函数,观察图象易得:,即时,函数,由函数的图象关于直线对称得,时,函数. .(2)当时,由得,;当时,由得,.方程的解集为四、典型习题导练1.函数的图象的一条对称轴方程是( )A. B. C. D. 2.已知点是函数上的两个不同点,且,试根据图象特征判定下列四个不等式的正确性:;.其中正确不等式的序号是 .3.4.若常数满足1,求使函数f (x)=sin(x+)+cos(x-)为偶函数的的值.5已知函数, (1)当y取最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx,的图象经过怎样的平移和伸缩变换得到?6. 求函数的最小值.7(06年高考浙江卷)如图,函数y=2sin(x),xR,(其中0)的图象与y轴交于点(0,1). (1)求的值;(2)设P是图象上的最高点,M、N是图象与x轴的交点,求3.5解三角形及三角函数的应用一、知识导学1.解三角形的的常用定理:(1) 内角和定理:结合诱导公式可减少角的个数.(2) 正弦定理: (指ABC外接圆的半径) (3) 余弦定理: 及其变形.(4) 勾股定理: 2.解三角形是指已知三角形中的部分元素运用边角的关系求得其他的边角的问题.三角函数的应用是指用三角函数的理论解答生产、科研和日常生活中的实际应用问题.他的显著特点是(1)意义反映在三角形的边、角关系上,有直角三角形,也有斜三角形.(2)函数模型多种多样,有三角函数,有代数函数,有时一个问题中三角函数与代数函数并存.解三角函数应用题一般首先审题,三角函数应用题多以“文字语言,图形语言”并用的方式,要通过审题领会其中的数的本质,将问题中的边角关系与三角形联系起来,确定以什么样的三角形为模型,需要哪些定理或边角关系列出等量或不等量关系的解题思路;其次,寻求变量之间的关系,也即抽象出数学问题,要充分运用数形结合的思想、图形语言和符号语言等方式来思考解决问题;再次,讨论对数学模型的性质对照讨论变量的性质,从而得到的是数学参数值;最后,按题目要求作出相应的部分问题的结论.二、疑难知识导析1.对各类定理的应用要注意使用其变形逆用.同时充分利用方程的思想知道其中的部分量可求出其他量.2.三角函数的应用主要是图象和性质的应用.3.三角形中元素关系的应用与实际问题中的应用关键是如何建立数模结构.三、经典例题导讲例1已知方程(a为大于1的常数)的两根为,且、,则的值是_.错解: 是方程的两个根, 由=可得错因:忽略了隐含限制是方程的两个负根,从而导致错误.正解: , 是方程的两个负根 又 即 由=可得答案: -2 .例2在中,已知,b,c是角A、B、C的对应边,则若,则在R上是增函数;若,则ABC是;的最小值为;若,则A=B;若,则,其中错误命题的序号是_.错解:中未考虑.错因:中未检验.正解:错误命题. .时最小值为.显然.得不到最小值为. 或(舍) ,.错误命题是.例3函数f(x)=的值域为_.错解: 错因:令后忽视,从而正解:例4 (06年高考江苏卷)【思路点拨】本题考查三角公式的记忆及熟练运用三角公式计算求值解:【解后反思】方法不拘泥,要注意灵活运用,在求三角的问题中,要注意这样的口决“三看”即(1)看角,把角尽量向特殊角或可计算角转化,(2)看名称,把一道等式尽量化成同一名称或相近的名称,例如把所有的切都转化为相应的弦,或把所有的弦转化为相应的切,(3)看式子,看式子是否满足三角函数的公式.如果满足直接使用,如果不满足转化一下角或转换一下名称,就可以使用.例5 在锐角ABC中,ABC,且B=60,=,求证:a+解:B=60 A+C=120 cos(A+C)=-又由已知=锐角ABC中,cosA0,cosC0,cosAcosC= sinAsinC=cos(CA)= 即CA=30A=45 B=60 C=75a+b=2R(sin45+sin60)=22R=22Rsin75=2c例6如图,在平面有点A、B、P、Q,其中,设APB与PQB面积为S、T,求S2+T2的取值范围.解:设BAP= 0,BQP=,在PAB,PBQ中由余弦定理cos=cos-1S2+T2(sin)2+(sin)2(cos)2+当cos=1时,S2+T2有最小值 当cos=时,S2+T2有最大值例7已知函数f(x)=sin(wx+j),x?R,(其中w0)的图象与x轴在原点右侧的第一个交点为N(6,0),又f(2+x)=f(2x),f(0)0,求这个函数的解析式.解:f(2+x)=f(2-x) f(x)关于x=2对称,又x轴在原点右侧的第一个交点为N(6,0) =6-2=4,即T=16,=.将N(6,0)代入f(x)=sin(x+j)得:sin(+j)=0, 得:j=2k+或j=2k+(k?Z), f(0)0, j=2k+(k?Z),满足条件的最小正数j=, 所求解析式f(x)=sin(x+).例8 已知ABC的周长为6,成等比数列,求 (1)ABC的面积S的最大值; (2)的取值范围.解 设依次为a,b,c,则a+b+c=6,b?=ac,由余弦定理得,故有,又从而 (1)所以,即 (2)所以 , 四、典型习题导练1.在RtABC中,C=90,则sinAcos2(45)-sincosA.有最大值和最小值0 B.有最大值但无最小值C.即无最大值也无最小值 D.有最大值但无最小值2.要得到y=sin2x的图象,只需将y=cos(2x-)的图象 ( )A.向右平移 B.向左平移 C.向右平移 D.向左平移3电流强度I(安)随时间t(秒)变化的函数I=的图象如图所示,则当秒时,电流强度是 安.4.在ABC中,sin=,则ABC的形状为 5.直角三角形的周长为定值2l,则斜边的最小值是 .6如果方程x2-4xcos+2=0与方程2x2+4xsin2-1=0有一根,互为倒数求值, 其中0.7.已知一半径为1,圆心角为的扇形中,有一个一边在半经上的内接矩形ABCD,求该矩形的最大面积. 8在分别是角A、B、C的对边,设,求sinB的值.2011-09-09人教网下载:
展开阅读全文