资源描述
北京市朝阳区高三年级第二次综合练习 数学答案(文史类) 2016.5 一、选择题:(满分40分)题号12345678答案DDACBAAC二、填空题:(满分30分)题号91011121314答案, ,(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:() 在中,因为, 所以因为,由正弦定理,解得 6分() 由得.由余弦定理,得.解得或(舍). 13分16. (本小题满分13分)解:(), . 4分()甲区优秀企业得分为88,89,93,95共4个,乙区优秀企业得分为86,95,96共3个.从两个区各选一个优秀企业,所有基本事件为(88,86),(88,95),(88,96),(89,86),(89,95),(89,96),(93,86),(93,95),(93,96)(95,86)(95,95)(95,96)共12个. 其中得分的绝对值的差不超过5分有(88,86),(89,86),(93,95),(93,96),(95,95),(95,96)共6个. 则这两个企业得分差的绝对值不超过5分的概率.13分17. (本小题满分13分)解:()因为,成等比数列,所以. 将代入得 , 解得 或 . 因为数列为公差不为零的等差数列,所以. 数列的通项公式.6分 ()因为对任意,时,都有, 所以最大,则,所以则 因此. 又,故当 时, , 此时不满足题意. 当 时, 则, 当 时, , 易知时,, 则的最小值为. 13分 18. (本小题满分14分) 解:()因为为等边三角形,为的中点,所以又因为平面平面,平面平面,平面,所以平面又因为平面,所以4分()连结,因为四边形为菱形,所以因为分别为的中点,所以,所以由()可知,平面因为平面,所以.因为,所以平面又因为平面,所以平面平面9分()当点为上的三等分点(靠近点)时,平面FOBCDAEPMN证明如下:设与的交点分别为,连结,因为四边形为菱形,分别为的中点,所以设为上靠近点的三等分点,则,所以因为平面,平面,所以平面由于,平面,平面,所以平面,即平面因为, 所以平面平面因为平面,所以平面.可见侧棱上存在点,使得平面,且 14分19. (本小题满分13分)解:() 函数的定义域为,.(1) 当时,,令,解得,则函数的单调递增区间为令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(2) 当时,,令,解得或,则函数的单调递增区间为 ;令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(3) 当时,恒成立, 所以函数的单调递增区间为. (4) 当时,,令,解得或,则函数的单调递增区间为,;令,解得,则函数的单调递减区间为.所以函数的单调递增区间为,单调递减区间为. 7分 ()依题意,在区间上. ,. 令得,或. 若,则由得,函数在()上单调递增. 由得,,函数在()上单调递减. 所以,满足条件; 若,则由得,或; 由得,. 函数在(),上单调递增,在上单调递减. , 依题意 ,即,所以; 若,则. 所以在区间上单调递增,不满足条件; 综上,. 13分20. (本小题满分14分)解:()依题,所以椭圆离心率为.3分()依题意,令,由,得,则.令,由,得,则.则的面积.因为在椭圆上,所以.所以,即,则.所以.当且仅当,即时,面积的最小值为 8分()由,解得.当时,,此时,.因为,所以三点共线.当时,也满足.当时,设,,的中点为,则,代入直线的方程,得:.设直线的斜率为,则,所以.由,解得,.所以.当点的横坐标与点的横坐标相等时,把,代入中得,则三点共线.当点的横坐标与点的横坐标不相等时,直线的斜率为.由,.所以直线的斜率为.因为,所以三点共线.综上所述三点共线. 14分
展开阅读全文