反式作用因子的作用特点和规律.doc

上传人:w****2 文档编号:6647919 上传时间:2020-03-01 格式:DOC 页数:5 大小:26.50KB
返回 下载 相关 举报
反式作用因子的作用特点和规律.doc_第1页
第1页 / 共5页
反式作用因子的作用特点和规律.doc_第2页
第2页 / 共5页
反式作用因子的作用特点和规律.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
反式作用因子的作用特点和规律 (1)一种反式因子能与一种以上的顺式元件结合:真核生物的转录因子不像原核生物的调控蛋白与顺式调控元件的结合有高度的专一性,有些反式因子可以和同源性很小的顺式元件结合。 (2)一种顺式元件能和一种以上的反式因子结合:与CAAT框结合的反式因子有好几类,如CTF类反式因子、CAAT结合蛋白(CP)类反式因子等。多种反式因子识别同一顺式元件,能加强这些反式因子单独或协同调节基因表达的精确性和灵活性。 (3)有些反式因子以二聚体或多聚体与顺式元件作用:反式因子二聚体形成的机制已在前文提及,二聚体以不同因子形成的异二聚体为主。 (4)有些反式因子的活性通过化学修饰来调节:有些反式因子激活基因转录的活性,是在修饰(磷酸化、乙酰化等)后才具有的。 (5)有些反式因子之间的相互作用对其发挥功能是必需的:在RNA聚合酶发挥转录作用时,几种转录因子如TFA、TFB、TFD、TFE的相互作用是必需的。几种反式因子和RNA聚合酶按一定的时间和空间顺序,形成具有活性的转录起始复合物。 真核基因转录调控 真核细胞的3种RNA聚合酶(1、和)中,只有RNA聚合酶能转录生成mRNA,以下主要讨论RNA聚合酶的转录调控。(一)顺式作用元件 顺式作用元件是指可影响自身基因表达活性的DNA序列,为特异转录因子的结合位点,J顷式作用元件通常是非编码序列。顺式作用元件并非都位于转录起点上游(5端)。根据顺式作用元件在基因中的位置、转录激活作用的性质及发挥作用的方式,可将真核基因的这些功能元件分为启动子、增强子及沉默子等。 1启动子 2增强子 3终止子 在3端终止密码的下游有一段AATAAA的核苷酸序列,它可能对mRNA的加尾有重要作用。这个序列的下游有一个反向重复序列,转录后可形成一个发卡结构。该发卡结构可以阻碍RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA容易从模板上脱落下来,同时RNA聚合酶也从DNA上解离下来,转录终止。AATAAA序列和其下游的反向重复序列合称为终止子,是转录终止信号。 4沉默子 某些基因含有负性调节元件沉默子,当其结合特异蛋白因子时,对基因转录起阻遏作用。沉默子最早在酵母中发现,以后在T细胞的T抗原受体基因上也被发现。沉默子的作用可不受序列方向的影响,也能远距离发挥作用,并可对异源基因的表达起作用。 5绝缘子 绝缘子(insulator)长约数百个核苷酸,通常位于启动子与增强子或沉默子之间,其明显特征是能够绝缘或保护启动子免受上游增强子的影响。(二)反式作用因子 反式作用因子又称转录因子(transcriptionfactors,TF)。绝大多数真核转录调节因子由某一基因表达后,通过与特异的顺式作用元件相互作用反式激活另一基因的转录,故称反式作用因子。有些基因产物可特异识别、结合自身基因的调节序列,调节自身基因的开启或关闭,这就是顺式作用。具有这种调节方式的调节蛋白称为顺式作用蛋白。 转录调节因子分为两类:基本转录因子是RNA聚合酶结合启动子所必需的一组因子,为所有mRNA转录启动共有。特异转录因子为个别基因转录所必需,决定该基因的时间、空间特异性表达,包括转录激活因子和抑制因子。所有转录因子至少包括两个结构域:DNA结合域和转录激活域。此外,很多转录因子还包含一个介导蛋白质蛋白质相互作用的结构域,最常见的是二聚化结构域。 1转录激活域 2二聚化结构域 与DNA结合的转录因子大多以二聚体形式起作用,与亮氨酸拉链、螺旋环螺旋结构有关。 3DNA结合域 DNA结合域(DNA binding domain)通常由60100个氨基酸残基组成。最常见的DNA结合域结构形式是锌指结构和碱性。螺旋。类似的碱性DNA结合域多见于碱性亮氨酸拉链和碱性螺旋环螺旋。真核基因的转录与染色质的结构变化相关 真核基因组DNA绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中DNA和组蛋白的结构状态都影响转录。 1染色质结构影响基因转录 细胞分裂时染色体的大部分到间期时松开分散在核内,称为常染色质(euchromatin),松散的染色质中的基因可以转录。染色体中的某些区段到分裂期后不像其他部分解旋松开,仍保持紧凑折叠的结构,在间期核中可以看到其浓集的斑块,称为异染色质(heterochromatin),其中从未见有基因转录表达,原本在常染色质中表达的基因如移到异染色质内也会停止表达。哺乳类雌体细胞2条X染色体,到间期一条变成异染色质者,这条X染色体上的基因就全部失活。所以,紧密的染色质结构阻止基因表达。 2组蛋白的作用 早期体外实验观察到组蛋白与DNA结合阻止DNA上基因的转录,去除组蛋白基因又能够转录。组蛋白是碱性蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用。染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的阻遏,起到特异性的去阻遏促转录作用。活跃转录的染色质区段,富含赖氨酸的组蛋白(H1组蛋白)水平降低,组蛋白2A2B(H2AH2B)二聚体不稳定性增加、组蛋白发生乙酰化(acetylation)、泛素化(ubiquitination)和组蛋白3(H3)巯基化等现象,这些都是核小体不稳定或解体的因素或指征。转录活跃的区域也常缺乏核小体的结构。这些都表明核小体结构影响基因转录。 3转录活跃区域对核酸酶作用敏感度增加 染色质DNA经DNase I作用后,通常会被降解成100bp和400bP的片段,反映了完整的核小体规则的重复结构。但活跃进行转录的染色质区域受DNase I消化后,常出现100200bp的DNA片段,且长短不均一,说明其DNA受组蛋白掩盖的结构有变化,出现了对DNase I的高敏感点(hypersensitivesite)。这种高敏感点常出现在转录基因的5端、3端或在基因上,多在调控蛋白结合位点附近。该区域核小体的结构发生变化,可能有利于调控蛋白结合而促进转录。 4DNA拓扑结构变化 天然双链DNA的构象大多是负性超螺旋。当基因活跃转录时,RNA聚合酶转录方向前方DNA的构象是正性超螺旋,其后面的DNA为负性超螺旋。正性超螺旋会拆散核小体,有利于RNA聚合酶向前移动转录,而负性超螺旋则有利于核小体的再形成。 5DNA碱基修饰变化 真核DNA中的胞嘧啶约有5被甲基化为5甲基胞嘧啶(5methylcytosine,m5C),而活跃转录的DNA片段中胞嘧啶甲基化程度常较低。这种甲基化最常发生在某些基因5侧区的CpG序列中,实验表明这段序列甲基化可使其后的基因不能转录,甲基化可能阻碍转录因子与DNA特定部位的结合从而影响转录。如果用基因打靶的方法除去主要的DNA甲基化酶,小鼠的胚胎就不能正常发育而死亡,可见DNA的甲基化对基因表达调控是重要的。 由此可见,染色质中的基因转录前先要有一个被激活的过程,但目前对激活机制还缺乏认识。 基因表达的概念及特点 真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限。要搞清楚人的全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 (一)基因表达的概念 基因表达就是基因转录及翻译的过程。在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特异生物学功能的蛋白质分子。但并非所有基因表达过程都产生蛋白质,tRNA、rRNA编码基因转录合成RNA的过程也属于基因表达。 (二)基因表达的时间性及空间性 基因表达的时间、空间特异性由特异基因的启动子(序列)和(或)增强子与调节蛋白相互作用所决定。 1时间特异性 按功能需要,某一特定基因的表达严格按特定的时间顺序发生,这是基因表达的时间特异性。多细胞生物基因表达的时间特异性又称阶段特异性。 2空间特异性在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现,这就是基因表达的空间特异性,又称细胞特异性或组织特异性。 (三)基因表达的方式 1组成性表达 某些基因产物对生命全过程是必需的或必不可少的。这类基因在一个生物个体的几乎所有细胞中持续表达,通常被称为管家基因。管家基因较少受环境因素影响,而是在个体各个生长阶段的大多数或几乎全部组织中持续表达,或变化很小。这类基因表达视为基本的或组成性基因表达。 2诱导和阻遏表达 与管家基因不同,另有一些基因表达极易受环境变化影响。在特定环境信号刺激下,相应的基因被激活,基因表达产物增加,这种基因是可诱导的,称为诱导。相反,如果基因对环境信号应答时被抑制,基因表达产物水平降低,称为阻遏。诱导和阻遏是同一事物的两种表现形式,在生物界普遍存在,也是生物体适应环境的基本途径。在一定机制控制下,功能上相关的一组基因,无论其为何种表达方式,均需协调一致、共同表达,即为协调表达。这种调节称为协调调节。 全基因组扫描 遗传分析仍是当前对致病相关基因识别、鉴定的主要方法,分为连锁分析和关联研究两种。由于人类基因组多态性的研究以及SNP分型技术的发展,目前全基因组连锁分析和关联研究亦变得切实可行。根据研究规模的大小,可以将疾病遗传分析分为以下几类,即定位克隆、连锁不平衡基因定位、全基因组候选基因分析、候选基因关联研究和定位候选基因克隆,其中定位克隆、连锁不平衡基因定位和全基因组候选基因分析均属于全基因组扫描。 不管是单基因疾病还是多基因疾病,通常是先行全基因组扫描(genome scanning);将疾病相关位点定位于染色体某个区域,然后再行候选基因策略或连锁不平衡分析,确定致病基因位点。如果利用家系进行连锁分析,即采用定位克隆;若是利用群体样本,则应用连锁不平衡分析进行基因定位。全基因组扫描已成功地应用在许多疾病的致病相关基因克隆上,并取得了一定的成果。 全基因组扫描所利用的是在人类基因组大量存在的微卫星或SNP,虽然当前使用较多的仍是微卫星,但由于芯片技术的发展,全基因组高分布密度的商品化SNP芯片相继面世(如Affymetrix公司的10k,100k和500k人基因组SNP芯片),越来越多的研究者使用SNP进行全基因组扫描。由于这些高密度的SNP芯片价格昂贵,不是一般的实验室所能承受。 微卫星全基因组扫描的原理是利用特定的引物将某条染色体上特定位置的微卫星扩增出来,并进行分析。这种分析所使用的微卫星通常具有较高的多态性,在不同的个体其长度不尽相同(也就是微卫星基本单位重复次数的不同),而不同长度的PCR产物则代表某一位点不同的等位基因。该种分析方法实际上是利用平均分布于各条染色体上的密度约为10cM的微卫星,检测每个微卫星是否存在与其邻近的疾病相关基因座位连锁。全基因组扫描并不能直接搜寻具体的疾病相关基因,而是通过研究均匀分布于整个基因组的微卫星标记来间接选择其相关的基因座位。在得到阳性结果后,又可在这些阳性位点附近再加密微卫星标记或利用SNP,用同样的方法来确定哪一个多态性位点与疾病连锁的可能性最大等等。这样在不断地缩小分析范围后,疾病相关基因定位的范围也越来越精细。由于人类基因组序列已知,一旦发现了与疾病相关基因连锁两侧的遗传标记,根据标记位点的具体位置,我们就可以知道定位区域内所有的基因。因此,当定位区域确定后,在该区域内选择候选基因直接进行测序,对所发现的突变在病人和对照组进行分型并分析,搜寻致病基因。另一个方法是直接从公共数据库挑选候选基因编码区、调控区(包括内含子)中的SNP,进行连锁不平衡分析,确定致病基因。 虽然单个SNP的多态信息量(polymorphism information content,PIC)不如微卫星,但在相同的PIC值的要求下,SNP图谱的密度为微卫星图谱的22525倍。因此在相同的信息提取效果下,利用10cM间隔的微卫星图谱即300个左右的微卫星标记进行初期定位,与4cM分辨率的约750个SNP图谱差不多,显然后者对基因定位的范围更精细,因此利用SNP标记能检测出微卫星标记不能探测到的疾病相关区域。随着人类基因组的重测序和DNA芯片技术的不断完善,目前已有应用于全基因组扫描的SNP芯片,如Affymetrix公司的GeneChip Mapping 500K ArraySet、100kArraySet和10k的SNP芯片(SNP数目分别约为50万、10万和1万)。显然这些芯片的SNP分布密度以及信息度大大高于定位克隆常规使用的微卫星,并已成功应用于疾病相关基因的研究。预计随着SNP芯片的进一步完善和成本的降低,将是未来疾病相关基因研究的主流技术。 全基因组扫描用的成套微卫星引物,可多达上千个。引物的5末端标记在激光激发下可发出不同颜色光的荧光素标记,如此可进行多重PCR,加速实验的进程。每一样本的PCR产物长度大小可以通过ABI或MegaBACE等测序仪进行检测。通过收集每一个个体的相关信息,经软件分析后即可得到结果。而采用Affymetrix公司的全基因组高密度的SNP芯片,操作更为简单。每个个体的DNA经酶切、PCR扩增、荧光标记、杂交扫描后即可得到每个个体上万个SNP的具体信息,经遗传分析后就可得到定位结果,且定位的区域一般比微卫星定位的小很多。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 人文社科


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!