船用陀螺罗经.doc

上传人:xin****828 文档编号:6642610 上传时间:2020-03-01 格式:DOC 页数:84 大小:3.63MB
返回 下载 相关 举报
船用陀螺罗经.doc_第1页
第1页 / 共84页
船用陀螺罗经.doc_第2页
第2页 / 共84页
船用陀螺罗经.doc_第3页
第3页 / 共84页
点击查看更多>>
资源描述
目录 第一篇 船用陀螺罗经 第一章 陀螺罗经指北原理 1 第一节 陀螺仪及其特性 1 第二节 自由陀螺仪在地球上的视运动 7 第三节 变自由陀螺仪为陀螺罗经的方法 9 第四节 摆式罗经等幅摆动和减幅摆动 14 第五节 电磁控制式陀螺罗经 20 第六节 光纤陀螺罗经 21 第二章 陀螺罗经误差及其消除 24 第一节 纬度误差 latitude error 24 第二节 速度误差 speed error 25 第三节 冲击误差 ballistic error 28 第四节 其他误差 30 第五章 磁罗经 第一节 磁的基本概念 61 第二节 船用磁罗经 64 第三节 磁罗经的检查 保管与安装 66 第四节 船正平时的自差理论 68 第五节 倾斜自差理论 75 第六节 罗经自差校正 77 第七节 自差的测定和自差表计算 83 第二篇 水声导航仪器 第六章 回声测深仪 86 第一节 水声学基础 86 第二节 回声测深仪原理 87 第三节 回声测深仪误差 89 第四节 IES 10 型回声测深仪 91 第七章 船用计程仪 94 第一节 电磁计程仪 94 第二节 多普勒计程仪 96 第三节 声相关计程仪 99 第一篇 船用陀螺罗经 第一章 陀螺罗经指北原理 陀螺罗经是船舶上指示方向的航海仪器 其基本原理是把陀螺仪的特性和地球自转运 动联系起来 自动地找北和指北 描述陀螺罗经指北原理所涉及的内容用式 1 1 表示 陀螺罗经 陀螺仪 地球自转 控制设备 阻尼设备 1 1 第一节 陀螺仪及其特性 一 陀螺仪的定义与结构 凡是能绕回转体的对称轴高速 旋转的刚体都可称为陀螺 所谓回 转体是物体相对于对称轴的质量分 布有一定的规律 是对称的 常见 的陀螺是一个高速旋转的转子 回 转体的对称轴叫做陀螺转子主轴 或称极轴 转子绕这个轴的旋转称 为陀螺转子的自转 陀螺转子主轴 相当于一个指示方向的指针 如果 这个指针能够稳定地指示真北 陀 螺仪就成为了陀螺罗经 如图 1 1 所示 一个陀螺用一 个内环 视其水平放置 也可称水平环 支承起来 在自转轴 主轴 水平面内 与主轴 相垂直的方向上 用水平轴将内环支承在外环 垂直环 上 而外环则用与水平轴相垂直 的垂直轴支承在固定环及基座上 把高速旋转的陀螺安装在这样一个悬挂装置上 使陀螺主 轴在空间具有一个或两个转动自由度 就构成了陀螺仪 可以看出高速旋转的转子及其支承 系统是构成陀螺仪的两个要素 实用罗经中 陀螺仪转子的转速都是每分钟几千转到每分钟几万转 陀螺仪的支承系 统应具有这样的特点 即它应保证主轴在方位上指任何方向 在高度上指示任何高度 总 之 能指空间任何方向 由此 我们可以将陀螺仪概述为 陀螺转子借助于悬挂装置可使 其主轴指空间任意方向 这种仪器就叫陀螺仪 实用陀螺仪 其转子 内环及外环等相对主轴 水平轴以及垂直轴都是对称的 无论 几何形体或质量都是对称的 重心与几何中心相重合的陀螺仪称为平衡陀螺仪 不受任何 外力矩作用的陀螺仪称为自由陀螺仪 工程上应用的都是自由陀螺仪 陀螺仪的转子能绕 一个轴旋转 它就具备了一个旋转自由 也就是具有一个自由度 像图 1 1 所示的陀螺仪 1 转子 2 内环 3 外环 4 固定环 5 基 座 图 1 1 具有三个自由度 一是转子绕 OX 轴作自转运动 一是转子连同内环绕 OY 轴 水平轴 转动 一是转子连同内环和外环绕 OZ 轴 垂直轴 转动 这种结构使转子主轴可指空间任意方向 三轴交点 O 为陀螺仪的中心点 陀螺仪的重心位于 O 点 所以它具有三个自由度 称为三 自由度陀螺仪 应当明确地指出 把陀螺仪定义为陀螺及其悬挂装置的总体是经典的定义 是有局限性 的 科学技术发展表明 有许多物理现象可以用来保持给定的方位 并能够测量载体的转动 即能产生陀螺效应 这就是说产生陀螺效应不一定要有高速旋转的刚体 因此 广义地说 凡能产生陀螺效应的装置都可称为陀螺仪 二 陀螺仪的特性 陀螺仪能制成指向仪器 陀螺罗经 是因为陀螺仪有着自己的 独特的动力学特性 这些特性就是定轴性和进动性 1 自由陀螺仪的定轴性 表明陀螺仪性能的主要物理参数是主轴动量矩 H 它说明了转子高速旋转运动的强弱 状态与方向 设图 1 1 所示的陀螺仪主轴动量矩 H 即 OX 轴正向水平指空间某一方向 现将基座倾斜 则出现的现象如图 1 2 所示 H 即 OX 轴正向仍指原来方向没变 如将基 座旋转 也可看到同样的结果 H 即 OX 轴仍然水平的指示原来的方向 没发生任何变化 这说明 当一个自由陀螺仪不受任何外力矩作用时 它的主轴将保持其空间初始指向不变 的特性 称作陀螺仪的定轴性 2 陀螺仪的进动性 若图 1 1 所示的陀螺仪的转子不转 这就是 一般的刚体系统了 在自转轴上 如 OX 轴正端 作用一个力 F 如图 1 3 为清楚展示转子位置 的变化 图中未画出支架系统 根据右手法则 F 产生的力矩应作用于 OY 轴正向 以 MY 表示 可以看到 转子在 F 力作用下 将绕 OY 轴转动 转动角速度为 Y 与 MY 同向 说明转子是沿着 外力方向转动的 这不是进动 使上述系统转子高速旋转 则成为了真正陀 螺仪 当陀螺仪受外力矩 MY 作用时 转子动量 图 1 2 图 1 3 图 1 4 矩 H 矢量端点 矢端 将绕着 OZ 轴转动了 转的方向符合这一规律 H 矢端向 MY 矢量 方向 不是沿着 270 角方向 而是沿着 90 角方向向 MY 转 所以我们称这是以捷径向 外矩 MY 转动 如图 1 4 这种运动称之谓进动 这就是陀螺仪的进动特性 应当明确 陀螺仪不受外力矩作用时 相对宇宙空间是定轴的 受外力矩作用时 却 不定轴了 而产生了进动 这个运动显然也是相对宇宙空间的 不是相对其他的任意系统 自然 谈到陀螺仪的进动性 有两个要点 一是受外力矩作用 二是属于相对空间运动的 运动方向 一定要记清楚 陀螺仪的特性可概括为以下两点 1 定轴性 gyroscopic inertia 一在不受 外力矩作用时 自由陀螺仪主轴保持它的空间的 初始方向不变 2 进动性 gyroscopic precession 在外 力矩作用下 陀螺仪主轴的动量矩 H 矢端以捷径 趋向外力矩 M 矢端 作进动运动或称旋进运动 可记为 H M 陀螺仪的定轴性和进动性是可以互相转化的 其转化条件就看有无外力矩的作用 无 外力矩作用时 陀螺仪主轴则相对于空间保持定轴 有外力矩作用时 陀螺仪主轴则相对于 空间作进动运动 在陀螺罗经中 当需要应用陀螺仪的定轴性时 则应尽一切努力设法减少 有害力矩的影响 当需要陀螺仪按一定规律运动时 则应对它施加相应的外力矩 3 进动公式 陀螺仪的主轴的动量矩 H 矢端进动快慢 用进动角速 度 p 来表示 在外力矩 MY 作用下的进动角速度应是作 用在 OZ 轴上的矢量 pz 因进动是绕 OZ 轴的 pz 的方向用右手法则确定 如图 1 5 所示 右手四指沿着 H 矢端进动方向握住 OZ 轴 进动时绕着转的轴 伸开 大拇指 则大姆指指示的方向就是 p 的矢量方向 若外 力矩作用在陀螺仪的 OZ 轴正向 即有 M Z 如图 1 6 所 示 则所产生的进动是绕 OY 轴的 py 作用于 OY 轴的 负向 即有 py 进动角速度的大小与什么有关呢 下面公式阐明动量矩 外力矩 与进动角速度HM 三者之间的关系 P 1 2 Hp 式 1 2 称为陀螺仪的进动公式 它的物理意义是很明显的 一个陀螺仪 当 H 为常 数时 实用的陀螺仪 一般 H 也就不变了 在外力矩 M 作用下 发生进动 显然 M 越大 进动越快 明显的表现出陀螺仪的进动特点 当 M 比较小时 进动就慢了 当 M 0 时 p 0 说明它不进动了 表现出它的定轴性 从另一个角度说 当 M 为常数时 比如仅 作用有很小的常值干扰力矩 则陀螺仪的 H 越大 进动角速度越小 表明主轴越不易改变 空间指向 即主轴容易稳定 利用公式 1 2 写出陀螺仪在 MY 和 M Z 作用下的进动角速度分别为 如图 1 7 图 1 5 图 1 6 Y X 1 3 HMZpYyz 三 陀螺仪主轴运动微分方程式 陀螺仪主轴运动 实际上就是在外力矩作用下 它在空间的进动 应当满足式 1 2 所描述进动关系 式中的 M 矢量应是任何方向 p 矢量方向与 M H 矢量方向满足右手法则 在直角座标系中 为方便一 般可用它们的分量形式 即都投影到三根座标轴上去 为简便 M 的分量都取正值 即取 MX MY M Z 现在就讨论在这三个力矩作用下 主轴该如何进动了 因为 MX 是作用陀螺仪的主轴上 与主轴动量矩 H 的 夹角是 0 不是 90 则它的进动角速度为 0 即 MY 力矩不引起进动 M Y 和 MZ 所引起的进动 满足式 1 3 的关系 将其联立 并作简单变换 就是陀螺仪主轴的运动方程式了 1 4 ZPYH 这组方程是从陀螺仪的进动原理导出的 今后 我们就用式 1 4 来讨论陀螺仪在外 力矩作用下 主轴的运动 下列两个问题应当明确 第一 式中的 MY M Z 它们是作用到陀螺仪上的所有外力矩之和分别在 OY OZ 轴上 的投影 换句话说 M Y 应是作用到 OY 轴上的所有外力矩之和 是作用到 OY 轴上的总外 力矩 而 MZ 则应是作用到 OZ 轴上的总外力矩 甚致 当轴承中的摩擦力矩也不能忽略时 都包含在内 第二 式中的 PY PZ 是宇宙空间的绝对运动角速度 在陀螺仪坐标轴 OY 及 OZ 上的投影 它是绝对运动速度 在我们所研究的体系中 主要包括宇宙 地球 以及地球 上的船舶 和陀螺仪三个物理实体 陀螺仪主轴相对宇宙 类似问题的绝对运动 应包含陀螺仪相对地球的相对运动 和地球相对空间的牵连运动 绝对运动速度等于牵连运动 速度加相对运动速度 为研究三个物理实体间的运动 就应建立三个坐标系 空间坐标系 地理坐标系和陀螺坐标系 研究三个座标系 间的运动关系 空间坐标系 O 是相对惯性空间固定不动的坐标系 它代表宇宙空间 坐标系原点 O 取在地球表面某一点 如图 1 8 所示 三个坐标轴分别指向三颗恒星 构成右手直角坐标 系 O 在地球表面只能平移 不跟地球一起运动 即不管原点 O 转动那里 它们永远指三 颗恒星不变 研究罗经 研究陀螺仪时 O 可以不画出来 但应始终记住 陀螺仪的运 动是相对宇宙空间的绝对运动 其方程式是绝对运动方程式 MZ 图 1 7 图 1 8 地理坐标系 ONWZ0 是随船运动的 地理坐标系 实际上代表地球自转与船舶 运动在内的牵连运动体 当陀螺仪固定放 置在地球上某点时 它随地球自转一起运 动 代表地球的自转运动 罗经装到运动 的船上时 船也是牵连运动体 地理坐标 系可与船一起运动 代表船的平移运动 构 成了随船运动的地理坐标系 三根坐标轴 是这样选定 O 点 原点 选在地球表面 与陀螺仪的中心相重合 在子午面内选水 平指北轴 ON 图 1 9 在水平面内选指 正西轴 OW OW 实际也是该处纬度圈的切 线 过 O 点选 OZ0轴垂直水平面指向天顶 OZ0轴实际是过 O 点的地球半径向天顶的延长线 这样就构成了一个代表地球的右手直角坐标 该坐标系的特点是 不管随船运动到哪里 各座标轴与地球的关系始终不变 即 ON 始终水平指北 OW 始终水平指西 OZ0始终指天顶 陀螺坐标系 OXYZ 是用来表示陀螺仪运动的 坐标系 坐标系原点也取在陀螺仪的几何中心点 O OX 轴与陀螺仪主轴重合 OY 轴必须与内环轴 重合 如图 1 1 所示 OZ 轴在转子平面内且与 XOY 平面相垂直 构成右手直角坐标系动量矩是 与 OX 轴重合的 我们的着眼点是 OX 轴的运动 规律 显然 OXYZ 坐标系与 ONWZ0 坐标系有这样 的关系 当 OX 轴与 ON 轴重合指北 OY 轴与 OW 轴重合指西时 OZ 与 OZ0 轴重合指天顶 仅有坐标系还不够 还应有确定主轴运动状 态的参量 主轴 OX 相对地理坐标的运动有两个 方位的变化和高度的变化 用方位角 和高度角 表示 方位角 azimuth angle 它是陀螺仪主轴在地平面上的投影 与地平面上真北线 ON 之 间的夹角 以子午面为基准 主轴偏在子午面西边时 方位角为正 主轴偏子午面东面时 方位 角为负 高度角 tilt angle 它是主轴 OX 与主轴在地平面投影线之间的夹角 以水平面为基 准 主轴上仰于地平面之上时 高度角为负 主轴下俯于地平面之下时 高度角为正 在后面讨论罗经运动时 为了能简单明了地用图形表 示陀螺仪主轴在地球上所指 的方向 以及它的运动情况 我们在陀螺仪的正北方向 竖立一个投影面 可以把主 轴指北端的端点投影到这个 图 1 9 图 1 11 H 东 图 1 10 平面上 用讨论投影点运动的方法来观察罗经主轴的运动状况 为此 引进可描述罗经主轴 在方位 和高度 上变化的投影图示法 图 1 11 的投影面是这样表示的 在地理坐标图的北端竖立一东西向的垂直平面 称为 投影面 子午面与投影面的交线为 MM 即真北线 水平面与投影面的交线为 HH 即水平 线 并在 HH 上注明东 E 和西 w 在投影面上 MM 与 HH 的交点 N 即为水平指北点 投 影面上的 MM 线与 HH 线组成一组直角坐标 罗经主轴的方位角 和高度角 可分别用横坐 标与纵坐标表示之 欲确定 和 可将罗经主轴的延长线与投影面相交 其交点即为罗经 主轴指北端在投影面上的投影点 例如 P 点为投影点 其横坐标和纵坐标则分别表示罗经主 轴指北端偏离子午面的方位角 与偏离水平面的高度角 之大小 附录 1 确定外力作用产生外力矩方向的方法 右手法则 今后讨论罗经指北原理 经常要判 定外力矩的方向 下面介绍这个右手法则的运用 一定要牢记 如图 1 12 所示 伸开右手 掌心正对着支点 O 四指沿着力的方向触到力的作用点上 伸开大姆 指 则大姆指所指的方向便是外力矩 M 的矢量方向 图示 力 F 平行于 OZ 轴作用于在 OX 轴上 外力矩 MY作用于 OY 轴正向 附录 2 力矩 torque 与进动线速度 在外力 矩 M 作用下 主轴进动角速度是 HP 这时 主轴上各点的线速度 uP等于 1 5 ruP r 是主轴上某点到陀螺仪中心的距离 随 着该点与中心距离的增加 线速度 uP的值 也正比例地增大 如图 1 13 但是 在动 量矩矢量 H 的末端 也就是主轴上这下点 与陀螺仪中心的距离 r 正好等于矢量 H 的 长度处 这一点的线速度是很有意义的 因为 uP 而现在 r H 所以 已知 MP 所以 1 6 u 这式说明 这一点的进动线速度 uP在数值上正好等于力矩 M 的值 另外 从图中可以看出 进动线速度 uP的方向是垂直于主轴的 力矩矢量方向也垂直于 主轴 两者又都在同一平面内 所以这两个矢量是平行的 大小相等方向相同的两个矢量 可 以用矢量等式来表示 即 图 1 12 图 1 13 1 7 MuP 这一式子 在力学中称为赖柴尔定理 它表示动量矩矢量末端的进动线速度 它的大小 与方向同外力矩矢量的大小与方向相等 在今后讨论主轴的运动中 常用进动线速度 uP表 示主轴在外力矩 M 的作用下 主轴进动的方向 第二节 自由陀螺仪在地球上的视运动 既然陀螺仪有定轴性 我们将它放到地球上 只要把转子主轴 OX 对准地球的真北 那么主轴 OX 不就保持其方向不变而一直指此真北了吗 构成陀螺罗经不是很简单吗 实际上 在地球上的陀螺仪 它的基座随着地球 一起转动 它的主轴 OX 在空间所指的方向不变 相 对地球而言是改变方向的 如图 1 14 所示 是地球 北半球 若将自由陀螺仪放在 A 点 使其主轴位于 子午面内并指恒星 S 由于地球自西向东转 经过一 段时间后 它转到 B 点 因定轴性 陀螺仪主轴仍 将指恒星 S 方向但相对子午面来说 主轴指北端已向 东偏过了 角 再如图 1 15 所示 是在赤道处 将 陀螺仪主轴 OX 水平东西向放置 A 点 随着地球 自转 它将转到 B C D 同样由于它有定轴 性 无论转到哪里 主轴都将永远保持空间原来的指 向不变 但是它相对地平面来说 却在不断的变化方 向 如 a 端 开始时是指东 因地球自转不断抬高 六小时后 a 端就指天顶了 再过六小时它就指西 了 这说明主轴相对地球不但有方位上的变化 而且也还有高度上的变化 人们在地球上看不到地球 的自转 但却能看到陀螺仪主轴的这种运动 称为陀 螺仪的视运动 地球自转才是真运动 人们生活中所看到旭日东升 夕阳西下 实际上是 图 1 14 图 1 15 图 1 16 太阳视运动 也是这个道理 从图 1 15 的实例中 不难看出陀螺仪的视运动速度与地球真 运动速度大小相等 方向相反 为了使陀螺仪主轴能稳定指北 应先找出陀螺仪视运动的 规律 然后再采取相应措施 一 地球自转角速度的水平分量和垂直分量 在北纬任意纬度处 如图 1 16 所示 可以将地球自转角速度分解到 ON 轴和 OZ0 轴上 得到两个分量 1 和 2 在 ON 轴上的 1 称为水平分量 在 OZ0 轴上的 2 称为垂直分量 显然 在北纬 1 9 sinco21e 而在南纬应为 1 10 sinco21e 因为南纬时分解得到的 2矢量指向地心 即指 OZ0 轴的负半轴 所以 2为负值 二 陀螺仪的视运动规律 上述分解得到的 2 它的物理 意义是什么呢 先看北纬 可以看出 2标明通过陀螺仪所在地 O 纬度为 的子午面以 OZ0 轴为转轴在旋转 旋 转角速度就是 2 如图 1 16 所示 子午面的旋转方向根据右手法则可以 确定 以 O 点为分界点 以北为子午 面北半平面 O 点以南为南半平面 显然 子午面的北半平面不断的向西 偏转 如果将陀螺仪主轴置于子午面 内 因定轴性主轴不改变空间指向 但由于子午面北半平面向西偏转了 相对而言 主轴指北端自然是向东偏了 主轴指北端 偏到子午面的东边去了 也就是说 在北纬陀螺仪的视运动是逐渐向东偏的 勿需细分析 了 在南纬 由于 2反向了 同样 O 点 南纬陀螺仪所在处 以北称北 半平面 则北半平面是向东偏的 陀 螺仪主轴的指北端就是向西偏了 南 纬指北端西偏 这就是结论 不论南 北纬 主轴视运动速度的大小都是 2 三 视运动线速度 因为陀螺仪主轴的动量矩矢量 H 为已知 所以 H 末端的线速度 V 2称为由 2引起的视运动线速度 其规律 在北纬 主轴向东运动 在南纬 由2 图 1 18W M 子午面 E 赤道面 V2 V2 图 1 17 M N S 于 2为负值 主轴向西运动 纬度不变 V 2的大小不变 如图 1 17 所示 现在再来看 1的物理意义 它表明通过 ON 轴的水平面以 ON 轴为自转轴在不断的旋 转 根据右手法则 显然是东半平面不断下降 西半平面不断上升 因为南北纬的 1都是 指 ON 轴正向 所以南北纬都是东半平面下降西半平面上升 当陀螺仪主轴偏离子午面以 后 若偏东了 则相对水平面而言 就产生上升的视运动 而偏西了 则为下降的视运动 东升西降 南北纬一样 主轴在高度上的视运动速度不但和 1有关 也和方位角 有关 如图 1 18 所示 主轴偏东角以后 在陀螺仪的 OY 轴上有 1 11 sin1 Y 我们主要讨论小角度时主轴的变化情况 则有 所以上式可写成 sin 1 12 这是地球自转角速度在 OY 轴上的分量 是真运动速度 主轴在高度上的视运动角速度 大小为 1 因此 主轴高度方向视运动线 速度大小可用 当 11sinHV 很小时 来表示 当陀螺仪主轴偏东 角时 主轴北 端 V1上升 当主轴偏在子午面之 西 角时 主轴北端 V1向下 所 以自由陀螺仪主轴由于 1引起的 视运动记作 东升西降 即主轴 偏东向上 偏西向下 由 可见 V1是 角的函 1HV 数 大 V1大 小 V 1小 0 V1 0 可用示意图 1 19 来表示 归纳本小节所述 陀螺仪的视运动规律如下 陀螺仪主轴指北端相对子午面 北纬东偏南纬西偏 偏转速度大小为 2 陀螺仪主轴指北端相对水平面是 偏东上升偏西下降 东升西降 升降角速度大小 为 1 第三节 变自由陀螺仪为陀螺罗经的方法 角速度 1 ecos 它将引起自由陀螺仪主轴指北端相对于水平面的升降视运动 其 线速度以 V1表示 这种影响在不为 90 的任意纬度上仅当 O 时才起作用 若使 0 亦即使自由陀螺仪主轴指北时 1 则将不产生影响 角速度 2 esin 它将引起自由陀 螺仪主轴指北端相对于子午面的北纬东偏南纬西偏的视运动 其线速度以 V2 表示 该影响 仅当 0 时才不起作用 对航海言之 因船舶不可能只航行于赤道而不航行到其他纬度的航 区 故对自由陀螺仪主轴相对于子午面的视运动影响是经常存在的 当地子午面以地球自转角速度的垂直分量 2 速度不断偏转 陀螺仪主轴不能稳定指北 使陀螺主轴指北端产生方位上的视运动 在北纬 它使主轴指北端向东偏离子午面 在南纬 它使主轴向西偏离子午面 因此 2是影响自由陀螺仪不能指北的主要矛盾 W M 子午面 E 水平面 V1 V1 图 1 19 M 要想使陀螺仪稳定指北 必须要克服 2 的 影响 比如说在北纬则应设法使陀螺仪主轴指 北端以 2 的速度向西偏转 跟随上子午面北半 平面的向西偏转 则主轴相对子午面而言稳定 在子午面内陆 也就是说这时陀螺仪的主轴指 示地理南北方向成为陀螺罗经了 为使陀螺仪 主轴指北端向西与子午面北半平面同步偏转 自然应想到用陀螺仪的进动特性 对陀螺仪施 加一个力 产生一个力矩 MY 利用陀螺仪进动 特性控制陀螺仪绕 OZ 轴进动 并满足 1 13 2 HPZ 使陀螺仪主轴稳定指北 这就是陀螺罗经指北的基本原理 在水平轴 OY 上施加的力矩 MY 称之为控制力矩 对于控制力矩 MY 应有如下几点要求 首先它应是自动产生 根据进 动的需要 大小和方向都要合适 其次 因 是随纬度变化的 所以 MY 也应 sin2e 能随的变化 自动的进行调整 使式 1 13 始终得到满足 应用陀螺仪的视运动规律 完全 可以做到上述各点 综上所述 为克服地球自转角速度的垂直分量 2对陀螺罗经的影响 陀螺仪必须设置 专门的控制设备用以产生控制力矩 MY 目前使用的航海罗经一般都是直接由地球重力作用 获得控制力矩的 故把这种力矩称为重力控制力矩 当然有些陀螺罗经的控制力矩不是直接 由地球重力作用获得控制力矩 而是利用专门电磁元件产生控制力矩 这种罗经称为电磁控 制式罗经 主要型号有 英美共同生产的阿玛 勃朗型 我国生产的 CLP 型和 DH 型 由于 采用各种不同结构的找北装置 因此形成了各种不同的罗经系列 在实践中 通常有两种方法直接获得重力控制力矩 变自由陀螺仪为航海陀螺罗经 第一种方法是重心下移法 是将陀螺仪的重心沿垂直轴下移 使重心不与支架点 O 重合 根据这种方法制成的罗经称为下重式罗经 属于这一系列的陀螺罗经主要有 德国生产的安 许茨型和泼拉特型 我国生产的航海 I 型等 安许茨系列陀螺罗经就是采用这种类型的找 北装置 近代安许茨型罗经的灵敏元件 sensitive element 包含两只陀螺仪的密封球体 称为 陀螺球 故这类罗经通常又称为双转子下重式陀螺罗经 第二种方法是水银器法或称液体连通器法 就是在平衡陀螺仪上挂上盛有水银的水银器 或液体连通器 液体连通器中注入适量的高比重液体 如水银或其他化学溶剂 构成液 体连通器式罗经 属于这一系列的罗经主要有 美国生产的斯伯利型和日本生产的斯伯利 型 ES 型等 用以产生控制力矩 这一类罗经一般称为水银器罗经 mercury ballistic gyrocompass 或称液体连通器罗经 liquid ballistic gyrocompass 斯伯利系列陀螺罗经就 是采用这种类型控制设备产生控制力矩的 由于斯伯利系列陀螺罗经大多数由一个陀螺仪 构成 这种罗经也常被称为单转子液体连通器式罗经 上述两类 实际上都是利用重力摆效应 获得控制力矩的 前种为正摆效应 后种为 负摆效应 所以合称为摆式罗经 图 1 20 一 下重式罗经的控制力矩 重心下移方法的罗经是将一个陀螺仪密封固定在一个圆球体内 称为陀螺球 即为罗经 的灵敏部分 制造时 使陀螺球的重心 G 低于其 几何中心 O 约 8mm 如图 1 21 所示 实际中陀 螺球被悬浮在支承液体中 并能在支承液体中自 由地转动 陀螺仪的动量矩 H 沿 OX 轴 主轴 指 正向 即指北 当陀螺仪主轴水平指北时 陀螺球重力 mg 经 过几何中心 a 支架点 重力不产生力矩 当主 轴升高一个角度时 重力 mg 的作用线不再通过 a 点 于是重力产生力矩 MY MY 的方向指 OY 轴正 向 此时 OY 轴正向为地理西方 如图 1 22 所示 MY 大小可用下式表示 1 14 sin amgY 式中 m 为陀螺球的质量 g 为重力加速度 a 为重心到中心的距离 若以 M 表示 mga 则称为 M 摆式罗经的最大摆性力矩 当 确较小时 实际如此 可用 替代 sin 小角定理 同时考虑到正负符号 则上式可改写为 1 15 gY 考虑陀螺仪的进动性 控制力矩 MY 引起的陀螺主轴指北端绕 OZ 轴的进动角速度可写 为 1 16 HPZ 上式表明 当陀螺球主轴 即北端 高出水平面时 角为负 代入上式则 MY 为正 即控制力矩沿 OY 轴 正向 使主轴向西进动 当陀螺球主轴相对水平面下 降了一个高度角 角为正 则 MY 为负 即控制力 矩沿 OY 轴负向 使主轴向东进动 假设起始时刻 t1 将重心下移的陀螺球放置在赤 道上的位置 A1处 如图 1 23 主轴水平指东 此时陀螺球的重心 G 和几何中心 O 在同一垂线上 重力 mg 的作用线通过几何中心 O 因此重力 mg 相 对几何中心 O 点的力矩为零 陀螺球处于自由状态 不发生任何进动 经过一段时间 在时刻 t2 由于地球的自转 下重式陀螺球位于 A2处 由于定轴性 陀螺 球主轴相对宇宙空间保持其初始方向不变 然而位于 A2位置的观察者则发现陀螺球主轴 OX 相对于水平面升高了一高度角 此时把重力 mg 分解为两个量即 mg X 和 mg Z 由于 mg Z 作用线通过几何中心 O 所以 mg Z 对几何中心 O 的力矩 0 分力 mg X 对 于几何中心 O 的力矩为 MY 作用在陀螺仪的水平轴 OY 上 并指 OY 轴的正向 即指向读 者 图 1 21 图 1 22 图 1 24 在重力控制力矩 MY 的作用 下 陀螺球主轴 OX 的正端则绕 垂直轴 OZ 正向向 MY 方向进动 方位角 由原来的 90 指东逐 渐减小向子午线的北端靠拢 若陀螺仪主轴 OX 的正端初 始指西 在 MY 的作用下 陀螺仪 主轴 OX 则绕垂直轴 OZ 的负向 向 MY 方向进动 其方位角 由 原来的 270 逐渐减小向子午线 的北端靠拢 综上所述 不管下重式罗经 其陀螺球主轴指北 OX 偏在子午面的哪一边 由于视运动而使罗经主轴指北端偏离水平面后 所产生的重力控制力矩 MY 均能使陀螺球主轴指北端向子午面北端靠拢 因此下重武陀螺 球具有自动找北的性能 二 液体连通器罗经的控制力矩 液体连通器罗经是在平衡陀螺仪主轴南北两侧挂上由两容器及连通管组成的液体连通 器 容器内注有一定数量的液体 硅油 液体连通器与陀螺转子外壳的连接点在 OZ 轴上 如 图 1 24 所示 陀螺仪动量矩 H 沿 OX 轴 主轴 指负向 即指南 当陀螺仪主轴水平指北时 南北两侧的容器内的液体量相等 此时液体连通器及其所含 液体的重心与陀螺仪几何中心 支架点 相重合 无外力矩作用于陀螺仪 图 1 23 当主轴倾斜角度时 液体连通器跟随主轴一起倾斜 升高端容器内的液体通过连通管向 降低端容器内流动 使低端容器形成多余液体 这部分多余液体的重力产生一个沿 陀螺仪 OY 轴作用的重力力矩 MY 设容器中心轴线到 OZ 轴的距离为 R 容器的截面积 为 S 多余液体的体积为 V 2RS tg 若液体的密度为 则多余液体的重力为 P 2RS tg 由图中可见 多余液体的重力到陀螺仪支架点 的距离为 R cos 则多余液体产生的 重力控制力矩 MY 为 1 17 sin2 gSR 式中 2R2S g 对于给定的液体连通器系一常量 可用 M 表示 称为最大控制 摆性 力矩 同 时 亦为小角 并考虑其正负符号 则 MY M 当陀螺仪主轴高于水平面时 负 值 重力控制力矩 MY 指 OY 轴负向 此 时主轴动量矩 H 沿 OX 轴负向 将向 OY 轴负向 即东 进动 即主轴指北端 OX 轴正向 向西进动 当陀螺仪主轴水 平时 为 0 重力控制力矩 MY 为 0 此 时主轴不产生进动 当陀螺仪主轴低于 水平面时 正值 重力控制力矩 MY 指 OY 轴正向 此时主轴动量矩 H 将向 OY 轴正向 即西 进动 主轴指北端向东进 动 把罗经主轴水平的放在赤道上 如 图 1 25 主轴正向 OX 及动量矩 H 自西 指东 在位置 A1时 由于主轴水平 所 以 MY O 随地球自转到了位 A2 由于视运动 主轴 OX 相对水平面上升 角 由于液体连通器 与转子外壳接着 液体连通器也倾斜同样角度 如上所述 多余液体产生 M Y 重力控制力矩 在 图示状态下 M Y 垂直纸面向里 即指南极方向 则 H 矢端将向南进动 即 H 具有寻找南极 的性能 或者说主轴的另 端 OX 反向 具有寻找北极的性能 若 H 水平指西 主轴 OX 正 端指东 控制力矩垂直纸面向里 则 H 矢端向南进动 主轴 OX 正向向北进 动 综上所述 液体连通器罗经与下 重式罗经一样 主轴具有自动找北的 能力 与下重式罗经比较 在高度角符 号相同时 液体连通器产生的重力控 制力矩与下重式陀螺球产生的重力控 制力矩指向刚好相反 而二者的动量 矩 H 指向正好相反 所以两者陀螺仪 主轴指北端 OX 轴正向 进动的规律 图 1 25 W M 子午面 E 水平面 u2 u2 图 1 26 M 相同 液体连通器罗经又可称为上重式罗经 设 u2 为控制力矩 MY 引起的主轴指北端运动线速度 则 1 19 HPZ 上式表明 u 2 的大小与主轴偏离水平面的高度角 成正比 u2 的变化规律可表示为图 1 26 第四节 摆式罗经等幅摆动和减幅摆动 一 摆式罗经等幅摆动 上节分析可知 在控制力矩 MY 作用下 主轴将绕 OZ 轴进动 其进动线速度为 u2 当 主轴指北端高于水平面时 u 2 的方向指西 主轴向西进动 当主轴低于水平面时 u2 的方向指 东 主轴向东进动 u 2 的大小与主轴偏离水平面的高度角 成正比 当主轴位于水平面时 u2 O 放置在南北纬处重心下移的陀螺仪 在 1 2 重力矩 MY 的共同作用下 其主轴指 北端的运动轨迹如图 1 27 所示 图 1 27 就是一个投影图 图中 r 点为主轴的稳定位置 r r 0 假设开始时主 轴偏东 角 但在水平面上 C 点 主轴有东偏视运动 线速度为 V2 还有上升视运动 速度为 V1 因为 0 所以 MY 0 则 u2 0 主轴以 V1和 V2的合成速度运动 向东又向上运动 一但主 轴升高出现 角 便产生向子午面的进动 速度为 u2 结果主轴以 V1 V 2 u 2 的合成速度运 动到 B 点 B 点在稳定位置平面上 即主轴升高 r 角的平面 这时主轴东偏的速度 V2 恰等于 主轴向西进动速度 u2 所以合成速度为 V1 主轴将继续上升 一旦离开 B 点 则主轴抬高角 度 大于 r 使得 u2 V2 所以主轴向上向西运动 图中 点 主轴自动地找北 角逐渐 增大 而 角逐渐减小 到达 A 点 因为已进入子午面 0 所以 V1 0 而 u2 仍大于 V2 故 主轴仅向西进动 一离开子午面 偏到子午面之西了 主轴出现下降的视运动 速度为 V1 因 为 u2 V2 故主轴是既向下又向西运动 一直运动到 G 点 仍是 r 平面上的一点 同样由于 u2 V2 主轴仅以 V1 向下运动 一离开 G 点 由于 r 所以 u2 V 2 则主轴指北端开始向下向东 运动到水平面上的 F 点 因为 0 所以 u2 0 这时主轴仅有东偏速度 V2 和下降速度 V1 离开 图 1 27 了 F 点 主轴偏到水平面之下 由于 不为 0 则马上又产生 u2 不过由于主轴在水平面之下 u2 是向东了 这时主轴将向下向东运动 主轴又开始自动地找北 角继续增大 角不断 减小 直到子午面内 E 点 由于 0 V1 0 主轴以 V2 和 u2 的合成速度向东运动 一离开子 午面 出现 角 产生 V1 方向向上 则主轴向东向上运动 又回到水平面的 C 点 这样继 续下去 主轴作椭圆运动 若不加其他装置 运动将继续下去 可见主轴不可能稳定指北 综上所述 位于北纬 N 处仅有控制力矩作用的摆式罗经 在 1 2 重力控制力矩 MY 共同作用下 罗经主轴指北端将围绕真北方向作等幅摆动 主轴的摆动轨迹为一椭圆 主轴 指北端作椭圆摆动一周所需的时间称为等幅摆动周期 或称椭圆运动周期 无阻尼周期 其大小为 1 20 02cos2 MHTe 可见 等幅摆动周期 T0 与罗经结构参数 H M 及船舶所在地理纬度 关 而与主轴起始 位置无关 当罗经结构参数 H M 确定后 T 0 随纬度增高而增大 为了消除摆式罗经的第一类冲击误差 在罗经设计纬度 0 上必须使 T0 84 4min 此时的 T0 称之为舒拉周期 二 摆式罗经减幅摆动 由于仅有控制力矩作用的摆式罗 经能够自动地找北 但不能稳定地指 北 因此还不是真正的陀螺罗经 欲 使摆式罗经主轴能自动地返地找北且 稳定的指北 必须变等幅摆动为减幅 摆动 当摆动的幅值为零时 主轴稳 定地指北 在陀螺罗经中 是对陀螺 仪施加阻尼力矩 使主轴的方位角 和高度角 按减幅摆动规律变化 便 能自动抵达其应有的稳定位置 根据 这一原理 对陀螺罗经的自由振荡可有两种阻尼方法 一种叫垂直阻尼法 即压缩椭圆短轴 的方法 这时阻尼力矩应施加于陀螺仪的垂直轴上 第二种叫水平阻尼法 即压缩椭圆长轴的 方法 这时阻尼力矩应施加于陀螺仪的水平轴上 1 水平轴阻尼法 damping in azimuth 或 damping towards the meridian 1 定义 由阻尼设备产生的阻尼力矩作用于罗经的水平轴 OY 上以实现阻尼的方法 称 为水平轴阻尼法 显然 在施加于水平轴上的阻尼力矩的作用下 将使罗经主轴北端 OX 产 生绕垂直轴 OZ 的阻尼进动 主轴指北端做阻尼进动的线速度用符号 u3 表示 根据对阻尼力矩的要求 在水平轴阻尼法中 罗经主轴指北端的阻尼进动线速度 u3 其方 向总是指向子午面的 因此 当罗经主轴北端位于子午面之东摆动时 阻尼进动线速度 u3 的 方向指西 当罗经主轴北端位于子午面之西摆动时 阻尼进动线速度 u3的方向指东 如图 1 28 所示 于是 在第 1 和第 3 象限内 因 u3 的作用而加快主轴指北端抵达子午面的速度 故当主轴指北端抵达子午面时的高度角 减小 亦即主轴指北端抵达子午面时高度角 减幅 等幅 在第 2 和第 4 象限内 因 u3 的作用将减弱主轴指北端偏离子午面的速度 故使主轴 图 1 28 指北端到达水平面时的方位角减小 亦即主轴指北端抵达水平面方位角 减幅 等幅 控制 进动速度 u2和阻尼进动速度 u3 的方向如图 1 28 所示 这样 在整个四个象限内 罗经主轴北端的高度角 和方位角 渐次衰减 并最后使主 轴指北端抵达其稳定位置 安许茨系列罗经均采用水平轴阻尼法 阻尼力矩由液体阻尼器产生 因此这种罗经也称 为液体阻尼器罗经 2 液体阻尼器的构成及作用 前面讲过 下重式陀螺罗经的指北元件是陀螺球 陀螺球的动量矩 H 置于 OX 轴上 一般 称为陀螺球的主轴 H 矢端 OX 轴正向 指北 现在在陀螺球内两个陀螺仪的上方沿 OX 轴 方向装一个油液连通器 内装粘度很大的阻尼油液 连通器南北各有一个油室 下面有连通 管 上面有通气管相连 阻尼器南北轴线与陀螺球 OX 轴 即动量矩 H 相一致 当陀螺球主 轴倾斜时 阻尼器也同样倾斜 油流动 但由于油的粘度很大 连通管很细等 油的流动很慢 出现一定的迟滞现象 设计时要求油的流动周期比主轴高度角 的变化周期落后 1 4 周期 当然有一个形成过程 使罗经主轴偏在子午面之东时 北容器有多余液体 阻尼力矩 Md 指西 主轴偏在子午面之西时 南容器有多余液体 阻尼力矩 Md 指东 如图 1 27 所示 Md 总是指向子午面 当主轴向子午面运动时 阻尼力矩使其运动加快 而当主轴背离子午面 时 阻尼力矩使其速度变慢 因而阻尼力矩起的作用是把主轴压向子午面 使主轴趋向稳定 位置 3 阻尼螺旋线 减幅摆动的物理实质 下重式罗经装上阻尼器以后 主轴指北端的运动轨迹不再是图 1 29 那样的椭圆了 经 过一段时间的摆动 阻尼器南北油室的油量差变化与主轴高度 的变化差 1 4 周期 则阻尼 力矩按着我们的要求形成 假若主轴还是在图 1 29 中 f 位置 再运动下去 由于增加一个向 子午面的阻尼力矩引起的进动速度 u3 主轴不会再通过 B C 等点 而是应向子午面方向靠 近 即缩短了摆动的长轴 或者说缩小了方位角 由于椭圆扁率是一个常数 在长轴缩短 的同时 短轴也相应的缩短 即高度角 也相应减小 主轴逐渐靠近子午面 最后到达 r 图 1 29 点 稳定位置 这样主轴端点的运动轨迹就变成收敛的螺旋线了 如图 1 28 所示 在稳定 位置时 V1 0 V2向东 u 2 向西 u 3 向东 由于稳定时主轴北端高 所以南油室油多 产生向东 的力矩 MdY 主轴北端将向东进动 即有 u3 向东 为平衡这一进动 主轴北端尚须再抬高一些 以 增强重力矩 即增大 u2 因此在 r 处最终线速度的平衡关系是 u2 V2 u3 主轴跟随子午面同 步运动 现在我们看到重心下移的陀螺仪 不但有自动寻找子午面的性能 而且还能自动抵 达子午面里的稳定位置 并保持跟随子午面同步转动即指北 成为名符其实的陀螺罗经 水平阻尼法的特点是 不会引起罗经在稳态时产生附加方位角 偏差 r 0 但阻 尼装置的结构比较复杂 当采用液体阻尼器时 找北力矩与阻尼力矩之间的理想相位关系要 经过很长的时间以后才能建立起来 而且相位关系很难严格做到恰好相差 2 所以阻尼效 果要受影响 4 稳定位置 液体阻尼器罗经陀螺球主轴稳定时 作用于 OY 轴的力矩使主轴进动角速度与子午面转 动的角速度整好相等 最终线速度的平衡关系是 u2 V2 u3 且 此时南北容器中的液面连线水平 此时多余液体角 与 CuHVMu 322 陀螺球主轴新稳定位置的高度角 r 相等 即 r 则有 1 21 r20 由上式可知 在北纬静止基座上 陀螺球主轴的稳定位置 仍在子午面内并相对于水平面 抬高一个 r 角 但由于 的存在 阻尼器内的多余液体所产生的 OY 轴负向的阻尼力矩 减弱 了作用于 OY 轴正向的重力控制力矩 所以主轴相对于水平面的稳定位置必须比等幅摆动时 再抬高一些 以产生较大的重力控制力矩 在抵消了多余液体产生的阻尼力矩后 同样能使陀 螺球主轴的进动速度与子午面在空间的旋转速度相等 2 垂直轴阻尼法 damping in tilt 1 定义 由阻尼 设备产生的阻尼力矩 作用于罗经的垂直轴 OZ 上以实现阻尼的 方法 称为垂直轴阻 尼法 显然 在施加 于垂直轴上的阻尼力 矩的作用下 将使罗 经主轴北端 OX 产生 绕水平轴 OY 的阻尼进动 主轴指北端做阻尼进动的线速度用符号 u3 表示之 同样 根据对阻尼力矩的要求 在垂直轴阻尼法中 罗经主轴指北端的阻尼进动线速度 u3 的方向总是指向水平面的 因此 当罗经主轴指北端在水平面之上摆动时 阻尼进动线速 度 u3 的方向向下 当罗经主轴指北端在水平面之下摆动时 阻尼进动线速度 u3 的方向向上 如图 1 30 所示 于是在第 1 和第 3 象限内 由于 u3 的作用将减弱主轴指北端偏离水平面的 速度 因此当主轴指北端抵达子午面时的高度角 减小了 亦即主轴指北端抵达子午面的高 图 1 30 度角 减幅 等幅 而在第 2 和第 4 象限内 仍 u3 的作用将加快主轴指北端抵达水平面的速 度 因而当主轴指北端抵达水平面时的方位角 减小了 亦即主轴指北端抵达水平面时的方 位角 减幅 等幅 这样 在第 1 第 2 第 3 和第 4 四个象限内使主轴指北端的高度角 和方位角 得到渐次衰减 并最后使主轴指北端抵达其稳定位置 r 处 斯伯利系列罗经和勃朗系列罗经 通常均采用垂直轴阻尼法 2 垂直轴阻尼法结构特点 液体连通器式罗经采用垂直轴阻尼 法 在陀螺马达外壳上方偏西一点 放一 小块阻尼重物 罗经典型结构如图 1 31 所示 阻尼重物在转子壳上方偏西一点 其 中心线与 OZ 轴之距离为 l 当主轴 OX 倾斜正 角时 阻尼重物 mDg 可分解成 沿 OZ 轴和平行于 OX 轴的二个分力 cosinFDZX 1 22 分力 FZ 对 O 点的力矩为 MX 作用 于 OX 轴上 不引起主轴的进动 所以 不必再去讨论它 而分力 FX 对 O 点产生 OZ 轴负向的力矩 MZ 1 23 DDDZ lgmlgM sin 式 1 23 称为垂直轴阻尼的阻尼力矩的通用表达式 其中 M D mDgl mD 阻尼重物 的质量 g 重力加速度 M D 称为最大阻尼力矩 根据式 1 23 当主轴相对水平面抬高 角时 角为负 则 MZ 为正 当 角倾斜水平 面之下时 角为正 则 MZ 为负 阻尼力矩沿 OZ 轴负向 3 垂直轴阻尼的物理实质 垂直轴阻尼主轴衰减振荡轨迹图 如图 1 32 所示 位于北纬 设在初始时刻 主轴指北且指高 角 这时有产生找北控制力矩 M 与阻尼力矩 MD 其 中找北力矩使主轴指北端 产生的水平线速度 u2 向西 阻尼力矩产生的垂直线速度 u3 向下 图 1 32 中画出了主轴指北端的运动线速度 V1 V 2 u 2 与 u3 相互关系 在这四个运动的共 同作用下 经过几个循环后 主轴就稳定在平衡位置 r 处 图 1 31 垂直轴阻尼法的优点之一是阻尼效果好 这是因为在结构上能准确地保证阻尼力矩与方 位挂制力矩二者在空间互相垂直 此外 垂直轴阻尼法实现起来也比较方便 但使用垂直轴 阻尼法的罗经在稳态时要产生一个附加的方位偏差 需要设置附加的补偿装置 4 稳走位置 主轴指北端稳定在平衡位置 r 处时 u 2 V 2 u 3 V 1 即 经分析求得液体连通器式罗经新的稳定位置为 rDrHM 12 1 24 tgr2 从上式可见 在北纬 陀螺仪主轴稳定时 主轴既不水平又不指北 而是偏东抬高一个角度 抬高的角度正好使主轴能够跟随子午面转动 消除方位视运动 但主轴倾斜了必然使阻尼重物 产生阻尼力矩 它使主轴向水平面进动 减小主轴高度角 这样 主轴向西进动的速度减小 脱离 子午面偏东 主轴一偏东 产生东升视运动 使高度角增大 当主轴高度角正好为 r 偏东 r 角时 向西进动的角速度与子午面转动角速度相等 东升视运动的角速度与阻尼力矩产生 的进动角速度相等 主轴既不远离子午面也不靠近子午面 既不升高也不降低 而是停留在此 位置稳定 对于给定的罗经来说 M D M 是常数 用 表示 稳定位置偏离子午面的角度大小 只取决于罗经所在的纬度 故称之为罗经的纬度误差 三 阻尼运动及参数 1 阻尼运动曲线 加上阻尼力矩后 陀螺仪主轴一旦偏离稳定位置 将围绕稳定位置作减幅摆动 主轴指北 端描绘的轨迹是一个逆时针螺旋线 陀螺仪主轴在方位上的运动规律可以画成如图 1 33 所示曲线 该曲线称为罗经主轴在方位上的阻尼摆动曲线 即 关系曲线 它可由航向记 录器记录下来 或者由驾驶员直接按时间记录方位角变化的数值后绘制成 图 1 32 l 下重式罗经 由两部分组成 第一部分为非周期指数衰减曲线 约 80 min 后达初始值的 百分之一 如图 1 33 所示的虚线部分 第二部分为周期性幅值衰减曲线 经 4 小时后达到初 始值的百分之一 2 液体连通器式罗经 幅度按指数 规律衰减的周期性减幅摆动曲线 2 阻尼因数 阻尼因数 f 又称衰减因数 它表示 主轴在方位角上减幅摆动过程的快慢程 度 若用 1 2 3 n 1 表示罗 经在作减幅摆动时主轴偏离子午面之西 和相继偏东的依次最大方位角 则罗进的阻尼因数 f 可表示为 1 25 4321 nf 通常阻尼因数 f 取 2 5 4 之间 一般为 3 3 阻尼周期 阻尼周期 Tn 表示罗经作减幅摆动时 主轴作阻尼摆动一周所需的时间 它与罗经的结 构参数 H M 和船舶所在纬度有关 在纬度一定时 阻尼周期 Tn 大于无阻尼周期 T 4 罗经稳定时间 从航海的角度来看 自罗经起动主轴经减幅摆动到其指向精度满足航海精度 1 要求 所需的时间 稳定时间的长短不仅取决于罗经的结构参数和所在地的纬度 还与起动时罗经 指北端的初始位置 方位角和高度角 有关 经分析可知 通常罗经稳定时间约为 4 小时 所以 船舶驾驶员一般在开航前 4 小时启动罗经 为了缩短稳定时间 有些罗经设有快速稳定装置 使主轴指北端预先接近其稳定位置 第五节 电磁控制式陀螺罗经 电磁控制式罗经简称电控罗经 它是在 平衡陀螺仪结构上设置一套电磁控制装置的 一种新型陀螺罗经 电磁控制罗经与双转子 摆式罗经 液体连通器罗经等机械摆式罗经 相比较 根本区别在于施加力矩的方式不同 机械摆式罗经是采用机械控制方法直接给陀 螺仪施加力矩 而电磁控制式罗经是通过一套 电磁控制装置间接给陀螺仪施加力矩的 电磁控制式罗经的主要优点有 其一 其 结构参数的选择不受舒勒条件的限制 并可根 据需要予以改变 启动时 增大施加于水平轴 和垂直轴的力矩电控系数 Ky 与 KZ 之值 即减 小阻尼周期 TD 之值 使电磁控制式罗经工作 图 1 33 图 1 34 于强阻尼状态 用以缩短其稳定时间 待主轴接近其稳定位置时 再将 Ky 和 KZ 值恢复至正常 工作的数值 使电磁控制式罗经工作于弱阻尼状态 用以提高罗经的指向精度 其四 在消除 2 的影响 补偿和消减有害力矩的干扰等均可用电路实现 这将有利于简化罗经的机械结 构和提高指向精度 图 1 34 为电磁控制式罗经的工作原理图 三自由度平衡陀螺仪的主轴 OX 水平放置 其动量矩 H 矢端沿主轴 OX 的正端 即指北 在水平轴 OY 上安装一电磁摆 1 在水平轴 OY 和垂直轴 OZ 上安装一力矩器 3 和 5 在电磁摆与力矩器之间接人方位放大器 4 和倾 斜放大器 2 所谓力矩器 是将输入量为电信号变为输出量为力矩的变换装置 电磁控制 式罗经是利用电磁摆 1 和水平力矩器 3 垂直力矩器 5 所组成的电磁控制装置将罗经主 轴引向其稳定位置 当电磁控制式罗经主轴指北端偏离子午面某一方位角 时 因水平面 在空间的转动 主轴指北端将向上或向下偏离水平面 当主轴指北端自水平面上升或下降一 高度角 时 电磁摆也倾斜相同的高度角 它将产生并输出与高度角 成正比的摆信号 经 方位放大器和倾斜放长器放大后分别输至水平力矩器及垂直力矩器 水平力矩器将产生与 高度角 成比例的作用于水平轴向的控制力矩 KY 与此同时 垂直力矩器将产生与高度角 成比例的作用于垂直轴节的阻尼力矩 KZ KY 与 KZ 分别称为施加于水平轴向和垂直轴 向的力矩电控系数 K Y 将使主轴具有找北之性能 而 KZ 将使主轴的摆动得到衰减 当主轴指北端低于水平面 角时 电磁摆将有摆信号输出 经方位放大器和倾斜放大器 放大后 分别输至水平力矩器和垂直力矩器 水平力矩器将产生沿水平轴负向作用的控制力 矩 即 My K Y 垂直力矩器将产生沿垂直轴正向作用的阻尼力矩 即 MZ K Z 可见 采用垂直轴阻尼法的电磁控制式罗经和液体连通器罗经相同 在北纬 处静止基 座上稳定时主轴指北端自水平面上升 角并自子午面偏东 角 YrKH2 tgYZr 对于参数 KY 与 KZ 已确定的罗经言之 主轴指北端在方位角 上的稳定位置 r 仅与纬度 有关 故称为纬度误差 用符号 r 表示之 在静止基座电磁控制式罗经的减幅摆动和液体连通器罗经是相同的 但在液体连通器 罗经中最
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 人文社科


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!