2019年高考数学 考纲解读与热点难点突破 专题13 空间几何体教学案 理(含解析).doc

上传人:tia****nde 文档编号:6253329 上传时间:2020-02-20 格式:DOC 页数:9 大小:196KB
返回 下载 相关 举报
2019年高考数学 考纲解读与热点难点突破 专题13 空间几何体教学案 理(含解析).doc_第1页
第1页 / 共9页
2019年高考数学 考纲解读与热点难点突破 专题13 空间几何体教学案 理(含解析).doc_第2页
第2页 / 共9页
2019年高考数学 考纲解读与热点难点突破 专题13 空间几何体教学案 理(含解析).doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
空间几何体【2019年高考考纲解读】1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题【重点、难点剖析】一、 三视图与直观图1一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样即“长对正、高平齐、宽相等”2由三视图还原几何体的步骤一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体二、几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧三、多面体与球与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图【高考题型示例】题型一、 三视图与直观图例1、(1)(2018全国)中国古建筑借助榫卯将木构件连接起来构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案A解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.(2)2018全国卷某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A2B2C3 D2【解析】先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图所示 圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图所示,连接MN,则图中MN即为M到N的最短路径ON164,OM2, |MN|2.故选B.【答案】B【方法技巧】1由直观图确认三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确认2由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置(3)确定几何体的直观图形状.【变式探究】某几何体的正(主)视图与俯视图如图所示,则其侧(左)视图可以为()答案B解析由俯视图与正(主)视图可知,该几何体可以是一个三棱柱挖去一个圆柱,因此其侧(左)视图为矩形内有一条虚线,虚线靠近矩形的左边部分,只有选项B符合题意,故选B.(2)如图,在正方体ABCDA1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()答案C解析取AA1的中点H,连接GH,则GH为过点E,F,G的平面与正方体的面A1B1BA的交线延长GH,交BA的延长线与点P,连接EP,交AD于点N,则NE为过点E,F,G的平面与正方体的面ABCD的交线同理,延长EF,交D1C1的延长线于点Q,连接GQ,交B1C1于点M,则FM为过点E,F,G的平面与正方体的面BCC1B1的交线所以过点E,F,G的平面截正方体所得的截面为图中的六边形EFMGHN.故可得位于截面以下部分的几何体的侧(左)视图为选项C所示【感悟提升】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果在还原空间几何体实际形状时,一般是以正(主)视图和俯视图为主,结合侧(左)视图进行综合考虑【变式探究】有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),ABC45,ABAD1,DCBC,则这块菜地的面积为_答案2在原图形中,AD1,AB2,BC1,且ADBC,ABBC,这块菜地的面积为S(ADBC)AB22.题型二几何体的表面积与体积例2、(2018全国)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45,若SAB的面积为5,则该圆锥的侧面积为_ 格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A848 B244C820 D28答案A解析由三视图可知,该几何体的下底面是长为4,宽为2的矩形,左右两个侧面是底边为2,高为2的三角形,前后两个侧面是底边为4,高为的平行四边形,所以该几何体的表面积为S4222224848.(2)一个几何体的三视图如图所示,则该几何体的体积是_,表面积是_答案6(6)解析由三视图知,该几何体是由四分之一球与半个圆锥组合而成,则该组合体的体积为V23223,表面积为S4222243226.【变式探究】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和(2)求简单几何体的体积时,若所给的几何体为柱体、锥体或台体,则可直接利用公式求解;求组合体的体积时,若所给定的几何体是组合体,不能直接利用公式求解,常用转换法、分割法、补形法等进行求解;求以三视图为背景的几何体的体积时,应先根据三视图得到几何体的直观图,然后根据条件求解【变式探究】中国古代数学名著九章算术中记载了公元前344年商鞅督造一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,其体积为12.6立方寸,则图中的x为()A1.6 B1.8 C2.0 D2.4答案A解析由三视图知,商鞅铜方升由一圆柱和一长方体组合而成由题意得,(5.4x)31x212.6,解得x1.6.(2)某几何体的三视图如图所示,则该几何体的体积是()A11 B9 C7 D5答案D解析由三视图知,该几何体如图,它可分成一个三棱锥EABD和一个四棱锥BCDEF,则V3321235.题型三、多面体与球例3、2018全国卷设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥D ABC体积的最大值为()A12B18C24 D54故选B.【答案】B【变式探究】已知正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD的外接球的表面积为_【解析】如图(1),在正三角形ABC中,ABBCAC2,则BDDC1,AD.在翻折后得到的几何体中,如图(2),ADBD,ADCD,则AD平面BCD,三棱锥ABCD的外接球就是它扩展为三棱柱的外接球,球心到截面BCD的距离dAD.在BCD中,BC,则由余弦定理,得cosBDC,所以BDC120. 【变式探究】(1)在三棱锥PABC中,PA平面ABC,ABBC,若AB2,BC3,PA4,则该三棱锥的外接球的表面积为()A13 B20C25 D29答案D解析把三棱锥PABC放到长方体中,如图所示,所以长方体的体对角线长为,所以三棱锥外接球的半径为,所以外接球的表面积为4229. (2)已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则等于()A12 B13 C14 D18答案C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则lR2r2,即2rR2r2,解得R2r,故ADC30,则DEF为等边三角形,设B为DEF的重心,过B作BCDF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则,故.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!