2019-2020年苏教版高中数学(选修1-1)2.1《圆锥曲线》word教案.doc

上传人:tia****nde 文档编号:6226182 上传时间:2020-02-20 格式:DOC 页数:2 大小:18KB
返回 下载 相关 举报
2019-2020年苏教版高中数学(选修1-1)2.1《圆锥曲线》word教案.doc_第1页
第1页 / 共2页
2019-2020年苏教版高中数学(选修1-1)2.1《圆锥曲线》word教案.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年苏教版高中数学(选修1-1)2.1圆锥曲线word教案教学过程设计1问题情境我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题:用平面去截圆锥面能得到哪些曲线?2学生活动学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于Dandelin双球理论只要让学生感知、认同即可。3建构数学(1)圆锥曲线的定义椭圆:平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。对于第二种情形,平面与圆锥曲线的截线由两支曲线构成。(类比椭圆的定义)双曲线:平面内到两定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,两个定点,叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。对于第三种情形,平面与圆锥曲线的截线是一条曲线构成。抛物线:平面内到一个定点F和一条定直线L(F不在L上)的距离相等的点轨迹叫做抛物线,定点叫做抛物线的焦点,定直线L叫做抛物线的准线。 (2)圆锥曲线的定义式上面的三个结论我们都可以用数学表达式来体现:设平面内的动点为M。椭圆:动点M满足的式子:(2a的常数)双曲线:动点M满足的式子:(02aBC,由椭圆的定义可得点A在一个椭圆上运动,且以B、C为焦点。MFl例3、已知定点F和定直线l,F不在直线l上,动圆M过F且与直线l相切,求证:圆心M的轨迹是一条抛物线。分析:欲证明轨迹为抛物线只需抓住抛物线的定义即可。变题:已知定点F和定圆C,F在圆C外,动圆M过F且与圆C相切,探究动圆的圆心M的轨迹是何曲线?提示:相切须考虑外切和内切。拓展:此处定点F也可改成定圆(但不宜在课堂上搞得过于复杂,可留作优生课后思考)课堂练习1、 已知ABC中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动?2、 设Q是圆上的动点,另有点A,线段AQ的垂直平分线l交半径OQ于点P,当Q点在圆周上运动时,则点P的轨迹是何曲线?5回顾小结(1)三种圆锥曲线的定义(2)三种圆锥曲线的定义式6作业布置(1)创新课时训练第1920页(2)思考:课本第25页3、4教学反思
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!