2019-2020年人教版高中数学必修五教案:3-4-2 基本不等式 的应用(一).doc

上传人:tia****nde 文档编号:6170036 上传时间:2020-02-18 格式:DOC 页数:5 大小:33KB
返回 下载 相关 举报
2019-2020年人教版高中数学必修五教案:3-4-2 基本不等式 的应用(一).doc_第1页
第1页 / 共5页
2019-2020年人教版高中数学必修五教案:3-4-2 基本不等式 的应用(一).doc_第2页
第2页 / 共5页
2019-2020年人教版高中数学必修五教案:3-4-2 基本不等式 的应用(一).doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年人教版高中数学必修五教案:3-4-2 基本不等式 的应用(一)项目内容课题3.4.2基本不等式的应用(1课时)修改与创新教学目标一、知识与技能1.利用基本不等式证明一些简单不等式,巩固强化基本不等式;2.从不等式的证明过程去体会分析法与综合法的证明思路;3.对不等式证明过程的严谨而又规范的表达.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验不等式的证明过程需要从理性的角度去思考,通过设置思考项,让学生探究,层层铺设,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘,数学的简洁美,数学推理的严谨美,从而激发学生的学习兴趣.教学重、难点教学重点 1.利用基本不等式证明一些简单不等式,巩固强化基本不等式; 2.对不等式证明过程的严谨而又规范的表达;3.从不等式的证明过程去体会分析法与综合法的证明思路.教学难点 1.利用基本不等式证明一些简单不等式,巩固强化基本不等式; 2.对不等式证明过程的严谨而又规范的表达;3.从不等式的证明过程去体会分析法与综合法的证明思路.教学准备投影仪、胶片、三角板、刻度尺教学过程导入新课师前一节课,我们通过问题背景,抽象出了不等式a2+b22ab(a、bR),然后以数形结合思想为指导,从代数、几何两个背景推导出基本不等式.本节课,我们将利用基本不等式 来尝试证明一些简单的不等式.(此时,老师用投影仪给出下列问题)推进新课问题1.已知x、y都是正数,求证:(1);(2)(xy)(x2y2)(x3y3)x3y3.师 前面我们研究了可以用不等式和实数的基本性质来证明不等式,请同学们思考一下,第一小问是否可以用不等式和实数的基本性质来证明此不等式呢?(思考两分钟)生 不可以证明.师 是否可以用基本不等式证明呢?生 可以.(让学生板演,老师根据学生的完成情况作点评)解:x、y都是正数,.,即.师 这位同学板演得很好.下面的同学都完成了吗?(齐声:完成)合作探究师 请同学继续思考第二小问该如何证明?它是否能用一次基本不等式就能证明呢?(引导同学们积极思考)生 可以用三次基本不等式再结合不等式的基本性质.师 这位同学分析得非常好.他对要证不等式的特征观察的很细致、到位.生 x,y都是正数,x20,y20,x30,y30.xy20,x2y22x2y20, x3+y32x3y30.可得(xy)(x 2y2)(x3y3)2xy22x3y3,即(xy)(x2y 2)(x 3y3)x 3y3. 师 这位同学表达得非常好,思维即严谨又周到.(在表达过程中,对条件x,y都是正数往往忽视)师 在运用定理:时,注意条件a、b均为正数,往往可以激发我们想到解题思路,再结合不等式的性质(把握好每条性质成立的条件)进行变形,进而可以得证.(此时,老师用投影仪给出下列问题)问题3.求证:.(此处留的时间可以长一些,意在激发学生自主探究问题,把探究的思维空间切实留给学生)师 利用完全平方公式,结合重要不等式:a2b 22ab,恰当变形,是证明本题的关键. (让学生板演,老师根据学生的完成情况作点评)解:a2b22ab,2(a2b2)a2b22ab(ab)2.2(a 2b2)(ab)2.不等式两边同除以4,得,即.师 下面同学都是用这种思路解答的吗?生 也可由结论到条件去证明,即用作差法.师 这位同学答得非常好,思维很活跃,具体的过程让同学们课后去完成.课堂练习1.已知a、b、c都是正数,求证:(ab)(bc)(ca)abc.分析:对于此类题目,选择定理:(a0,b0)灵活变形,可求得结果. a、b、c都是正数,ab20,bc20,c+a20.(ab)(bc)(ca)222abc,即(ab)(bc)(ca)abc.合作探究2.已知(ab)(xy)2(aybx),求证:.(老师先分析,再让学生完成)师 本题结论中,注意互为倒数,它们的积为1,可利用公式ab2ab,但要注意条件a、b为正数.故此题应从已知条件出发,经过变形,说明为正数开始证题.(在教师引导下,学生积极参与下列证题过程)生 (ab)(xy)2(aybx),axaybxby2ay2bx.axaybybx0.(axbx)(ayby)0.(ab)(xy)0,即ab与xy同号.均为正数. (当且仅当时取“”).师生共析 我们在运用重要不等式a 2b22ab时,只要求a、b为实数就可以了.而运用定理:“ab”时,必须使a、b满足同为正数.本题通过对已知条件变形(恰当地因式分解),从讨论因式乘积的符号来判断是正还是负,是我们今后解题中常用的方法.课堂小结师 本节课我们研究了什么问题?同学们在本节课的研究过程中有什么收获呢?生 我们以基本不等式为基础,证明了另外一些重要、常用的不等式,并且在证明过程中进一步巩固了证明不等式常用的思想方法.(教师提出对重要、常用不等式的掌握要求)师 本节课我们用到重要不等式a 2b 22ab;两正数a、b的算术平均数(),几何平均数(ab)及它们的关系证明了一些不等式,它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:,.师 同学们课后要进一步领会这些重要不等式成立的前提条件如何用.为下一节课基本不等式的实际应用打下坚实的基础.布置作业课本第116页,组第1题.板书设计基本不等式的应用(一)复习引入例1方法归纳基本不等式 例2 方法引导 小结实例剖析(知识方法应用)示范解题教学反思利用基本不等式证明一些简单不等式,巩固强化基本不等式.以数学知识为载体,对学生的逻辑思维能力,各种思想方法的掌握,进而提高学生的数学素质与数学素养,这是高中数学教学的一项主要任务.在本节课的教学过程中,对一些不等式的证明不是直接给出,而是以设问方式的变化,引导学生思考,通过由特殊到一般的探索规律去解决问题.
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!