2019-2020年人教版高中数学必修二教案:4-2-2 圆与圆的位置关系.doc

上传人:tia****nde 文档编号:6157398 上传时间:2020-02-18 格式:DOC 页数:6 大小:35.50KB
返回 下载 相关 举报
2019-2020年人教版高中数学必修二教案:4-2-2 圆与圆的位置关系.doc_第1页
第1页 / 共6页
2019-2020年人教版高中数学必修二教案:4-2-2 圆与圆的位置关系.doc_第2页
第2页 / 共6页
2019-2020年人教版高中数学必修二教案:4-2-2 圆与圆的位置关系.doc_第3页
第3页 / 共6页
点击查看更多>>
资源描述
2019-2020年人教版高中数学必修二教案:4-2-2 圆与圆的位置关系项目内容课题4.2.2 圆与圆的位置关系(1课时)修改与创新教学目标使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想.教学重、难点教学重点:求弦长问题,判断圆和圆的位置关系.教学难点:判断圆和圆的位置关系.教学准备多媒体课件教学过程导入新课平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.两圆的位置关系:外离外切相交内切内含dR+rd=R+r|R-r|dR+rd=|R-r|d|R-r| 在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.推进新课新知探究提出问题初中学过的平面几何中,圆与圆的位置关系有几种?判断两圆的位置关系,你有什么好的方法吗?你能在同一个直角坐标系中画出两个方程所表示的圆吗?根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?如何判断两个圆的位置关系呢?若将两个圆的方程相减,你发现了什么?两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?活动: 教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径.讨论结果:初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断.略.根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:1当dR+r时,圆C1与圆C2外离;2当d=R+r时,圆C1与圆C2外切;3当|R-r|dR+r时,圆C1与圆C2相交;4当d=|R-r|时,圆C1与圆C2内切;5当d|R-r|时,圆C1与圆C2内含; 二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.总结比较两种方法的优缺点.几何方法:直观,容易理解,但不能求出交点坐标.代数方法:1只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离).2优点是可以求出公共点.若将两个圆的方程相减,得到一个一元一次方程,既直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断.应用示例例1 已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.活动:学生思考交流,教师引导提示,判断两圆的位置关系有两种基本的方法,要合理使用.方法一看两圆的方程组成的方程组的实数解的情况,方法二利用圆心距与两圆半径的和与差之间的关系判断.解:方法一:圆C1与圆C2的方程联立得到方程组-得x+2y-1=0, 由得y=,把上式代入并整理得x2-2x-3=0. 方程的判别式=(-2)2-41(-3)=160,所以方程有两个不等的实数根,即圆C1与圆C2相交.方法二:把圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,化为标准方程,得(x+1)2+(y+4)2=25与(x-2)2+(y-2)2=10.圆C1的圆心是点(-1,-4),半径长r1=5;圆C2的圆心是点(2,2),半径长r2=.圆C1与圆C2的连心线的长为=3,圆C1与圆C2的半径长之和为r1+r2=5+,半径长之差为r1-r2=5-.而5-35+,即r1-r23r1+r2,所以圆C1与圆C2相交,它们有两个公共点A、B.点评:判断两圆的位置关系,一般情况下,先化为标准方程,利用几何法判断较为准确直观.变式训练 判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16,(2)x2+y2+6x-7=0与x2+y2+6y-27=0.解:(1)根据题意,得两圆的半径分别为r1=1和r2=4,两圆的圆心距d=5.因为d=r1+r2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36.故两圆的半径分别为r1=4和r2=6,两圆的圆心距d=.因为|r1-r2|dr1+r2,所以两圆相交.例2 已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x1,y1)、B(x2,y2),则A、B两点坐标满足方程组-,得3x-4y+6=0.因为A、B两点坐标都满足此方程,所以3x-4y+6=0即为两圆公共弦所在的直线方程.易知圆C1的圆心(-1,3),半径r=3.又点C1到直线的距离为d=.所以AB=2,即两圆的公共弦长为.点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.知能训练课堂练习P141练习题课堂小结本节课主要学习了圆与圆的位置关系,判断方法:几何方法和代数方法.作业习题4.2 A组8、9、10、11.板书设计 4.2.2 圆与圆的位置关系圆与圆的位置关系: 例1相离、外切、相交、内切、内含 变式 例2教学反思本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的几何方法,但用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法.前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了代数和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!