2019高中数学第三章数系的扩充与复数的引入习题课课件新人教A版选修.ppt

上传人:xt****7 文档编号:5741620 上传时间:2020-02-06 格式:PPT 页数:31 大小:820KB
返回 下载 相关 举报
2019高中数学第三章数系的扩充与复数的引入习题课课件新人教A版选修.ppt_第1页
第1页 / 共31页
2019高中数学第三章数系的扩充与复数的引入习题课课件新人教A版选修.ppt_第2页
第2页 / 共31页
2019高中数学第三章数系的扩充与复数的引入习题课课件新人教A版选修.ppt_第3页
第3页 / 共31页
点击查看更多>>
资源描述
习题课 复数运算的综合问题 1 与复数有关的方程问题 1 实系数一元二次方程ax2 bx c 0 a b c R a 0 根的情况 b2 4ac 2 复系数方程的解法若复系数方程有实数根 通常将这个实数根设出 代入方程 利用复数的运算以及复数相等的充要条件进行求解 2 复平面内两点间的距离公式及复数形式的基本轨迹 1 两点间的距离公式设复数z1 z2对应的两点Z1 Z2的距离为d 则d z1 z2 2 常见曲线方程的复数形式 3 常用结论在复平面内 若复数z1 z2对应的点为A B z1 z2对应的点为C O为坐标原点 则四边形OACB为平行四边形 并且 1 当 z1 z2 z1 z2 时 四边形OACB为矩形 2 当 z1 z2 时 四边形OACB为菱形 3 当 z1 z2 且 z1 z2 z1 z2 时 四边形OACB为正方形 4 对于任意复数z1 z2 有 z1 z2 2 z1 z2 2 2 z1 2 z2 2 做一做1 若关于x的方程x2 2 3i x m 6i 0有实数根 则实数m的值等于 A 2B 2C 8D 0 答案 C 做一做2 若复数z满足 z 1 2i 2 3i 则复数z在复平面内对应点的轨迹是 A 点B 直线C 圆D 椭圆解析 由已知得 z 1 2i 因此复数z在复平面内对应点到点 1 2 的距离等于 故其轨迹为圆 答案 C 做一做3 若z C且 z 2 2i 1 则 z 2 2i 的最小值是 A 2B 3C 4D 5解析 因为 z 2 2i 1 所以z在以 2 2 为圆心 半径为1的圆上 而 z 2 2i 是该圆上的点到点 2 2 的距离 故最小值为3 如图 答案 B 做一做4 关于复数z的方程 z 2z 1 8i的解是 解析 设z x yi x y R 答案 3 4i 探究一 探究二 探究三 思维辨析 与复数有关的方程问题 例1 1 已知关于x的方程3x2 2 2i x 1 ai 0 a R 有正实数根x0 则实数a 2 若虚数z1 z2是一个实系数一元二次方程的两个根 且 则z1 z2 思路分析 对于 1 可将实数根设出 代入 利用复数相等的充要条件求解 对于 2 应根据一元二次方程两个虚数根互为共轭复数进行求解 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 答案 1 2 2 1 探究一 探究二 探究三 思维辨析 反思感悟1 当一个复系数方程有实数根时 通常将这个实数根设出 然后代入方程 整理 根据复数相等的充要条件进行求解 2 当实系数一元二次方程有两个虚数根时 这两个虚数根一定互为共轭复数 根与系数的关系仍然成立 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 复平面内两点间距离公式的应用 例2 已知z C 指出满足下列条件的复数z对应的点Z的轨迹 1 z 1 i 1 2 z 1 z 2i 3 z 1 z 1 i 2 思路分析 充分利用复平面内两点间的距离公式以及相关曲线的定义进行分析求解 解 1 由于 z 1 i z 1 i 1 它表明点Z到点 1 1 的距离等于1 因此轨迹是以点 1 1 为圆心 以1为半径的圆 2 由于 z 1 z 2i 它表示点Z到点 1 0 的距离等于点Z到点 0 2 的距离 因此轨迹是以点 1 0 0 2 为端点的线段的垂直平分线 3 由于 z 1 z 1 i 2 它表示点Z到两定点 1 0 1 1 的距离之和等于常数2 满足椭圆的定义 因此轨迹是以点 1 0 和 1 1 为焦点 长轴长为2的椭圆 探究一 探究二 探究三 思维辨析 反思感悟1 z1 z2 表示复平面内复数z1 z2对应的点Z1 Z2之间的距离 在具体应用中 要注意绝对值符号内应是两个复数差的形式 2 判断复数形式表示的点的轨迹时 要充分利用复平面内两点间的距离公式以及相关曲线的定义进行分析判断 探究一 探究二 探究三 思维辨析 变式训练2若A B分别是复数z1 z2在复平面内对应的两点 O为原点 且 z1 z2 z1 z2 则 AOB的形状为 探究一 探究二 探究三 思维辨析 例3 已知复数z1 i 1 i 3 1 求 z1 2 若 z 1 求 z z1 的最大值 思路分析 转化为平面几何问题求解 或根据复数的几何意义 利用数形结合的方法进行求解 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 反思感悟涉及复数模的最值问题 一般要结合轨迹 或转化为平面几何问题求解 或运用数形结合的方法进行求解 探究一 探究二 探究三 思维辨析 变式训练3如果复数z满足 z i z i 2 那么 z i 1 的最小值是 解析 设复数 i i 1 i在复平面内对应的点分别为Z1 Z2 Z3 复数z在复平面内对应的点为Z 如图 因为 z i z i 2 所以点Z的集合为线段Z1Z2 原问题可转化为动点Z在线段Z1Z2上移动时 求 ZZ3 的最小值 易知 ZZ3 min 1 故选A 答案 A 探究一 探究二 探究三 思维辨析 复数概念与运算的综合问题 例4 设复数z1 z2满足z1z2 2iz1 2iz2 1 0 思路分析 1 可利用复数问题实数化方法进行求解 2 充分利用共轭复数的性质求解 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 反思感悟1 解决复数问题的基本策略是 复数问题实数化 即将复数设出其代数形式 然后根据条件转化为实数问题进行求解 2 解决复数的概念与运算的综合问题时 首先要明确复数的相关概念 其次要熟练掌握复数运算的法则 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 混淆复系数方程与实系数方程的解法致误 典例 已知关于x的方程x2 k 2i x 2 ki 0有实根 求实数k的值 错解分析 本题常见错解是盲目套用实系数一元二次方程有实数根的条件 即根据方程的判别式大于0 来进行判断求解 解 设x x0是方程的实根 代入方程并整理 探究一 探究二 探究三 思维辨析 纠错心得对于复系数一元二次方程 即方程的系数中含有虚数时 不能用判别式判断其根的情况 而应该将方程的实数根设出 代入方程 利用复数相等的充要条件进行求解 探究一 探究二 探究三 思维辨析 跟踪训练若关于x的方程x2 1 2i x 3m 1 i 0有实数根 则纯虚数m等于 解析 设m ki k R k 0 方程的实数根为x0 答案 A 3 已知 z 3 z 3 10且 z 5i z 5i 8 则复数z等于 A 4iB 4iC 4iD 以上都不正确解析 由题意 知复数z的对应点在以 3 0 3 0 为焦点 长轴长为10的椭圆上 又在以 0 5 0 5 为焦点 实轴长为8的双曲线的下支上 如图所示 故z 4i 故选B 答案 B 4 若复数z满足 z i 3 则复数z对应的点Z的轨迹所围成的图形的周长为 解析 由条件知 z i 3 所以点Z的轨迹是以点 0 1 为圆心 以3为半径的圆 故其周长为6 答案 6 5 已知x 1 i是方程x2 bx c 0的一个根 b c为实数 1 求b c的值 2 试判断x 1 i是否为方程的根 解 1 因为1 i是方程x2 bx c 0的根 所以 1 i 2 b 1 i c 0 即 b c 2 b i 0 故b的值为 2 c的值为2 2 由 1 知方程可化为x2 2x 2 0 把x 1 i代入方程左边得x2 2x 2 1 i 2 2 1 i 2 0 显然方程成立 所以x 1 i也是方程的根
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!