2019年高考数学二轮复习 专题八 选考4系列 8.2 不等式选讲课件 文.ppt

上传人:xt****7 文档编号:5700731 上传时间:2020-02-05 格式:PPT 页数:25 大小:692.50KB
返回 下载 相关 举报
2019年高考数学二轮复习 专题八 选考4系列 8.2 不等式选讲课件 文.ppt_第1页
第1页 / 共25页
2019年高考数学二轮复习 专题八 选考4系列 8.2 不等式选讲课件 文.ppt_第2页
第2页 / 共25页
2019年高考数学二轮复习 专题八 选考4系列 8.2 不等式选讲课件 文.ppt_第3页
第3页 / 共25页
点击查看更多>>
资源描述
8 2不等式选讲 选修4 5 命题热点一 命题热点二 命题热点三 命题热点四 绝对值不等式的解法 思考 如何解绝对值不等式 例1已知函数f x x 1 x 2 1 求不等式f x 1的解集 2 若不等式f x x2 x m的解集非空 求m的取值范围 命题热点一 命题热点二 命题热点三 命题热点四 命题热点一 命题热点二 命题热点三 命题热点四 题后反思绝对值不等式的求解方法 1 ax b c ax b c c 0 型不等式的解法 ax b c c ax b c ax b c ax b c或ax b c 然后根据a b的取值求解即可 2 x a x b c c 0 和 x a x b c c 0 型不等式的解法 利用绝对值不等式的几何意义求解 体现数形结合思想 利用 零点分段法 求解 体现分类讨论思想 通过构建函数 利用函数图象求解 体现函数与方程思想 命题热点一 命题热点二 命题热点三 命题热点四 对点训练1 2018全国 文23 设函数f x 2x 1 x 1 1 画出y f x 的图象 2 当x 0 时 f x ax b 求a b的最小值 命题热点一 命题热点二 命题热点三 命题热点四 y f x 的图象如图所示 2 由 1 知 y f x 的图象与y轴交点的纵坐标为2 且各部分所在直线斜率的最大值为3 故当且仅当a 3且b 2时 f x ax b在 0 上成立 因此a b的最小值为5 命题热点一 命题热点二 命题热点三 命题热点四 绝对值不等式的参数范围问题 思考 解决绝对值不等式的参数范围问题的常用方法有哪些 例2已知函数f x 2x a a 1 当a 2时 求不等式f x 6的解集 2 设函数g x 2x 1 当x R时 f x g x 3 求a的取值范围 命题热点一 命题热点二 命题热点三 命题热点四 解 1 当a 2时 f x 2x 2 2 解不等式 2x 2 2 6得 1 x 3 因此f x 6的解集为 x 1 x 3 2 当x R时 f x g x 2x a a 1 2x 2x a 1 2x a 1 a a 当x 时等号成立 所以当x R时 f x g x 3等价于 1 a a 3 分类讨论 当a 1时 等价于1 a a 3 无解 当a 1时 等价于a 1 a 3 解得a 2 所以a的取值范围是 2 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 解决绝对值不等式的参数范围问题常用以下两种方法 1 将参数分类讨论 将其转化为分段函数解决 2 借助于绝对值的几何意义 先求出含参数的绝对值表达式的最值或取值范围 再根据题目要求 求解参数的取值范围 2 解答此类问题应熟记以下转化 f x a恒成立 f x min a f x a有解 f x max a f x a无解 f x max a f x a无解 f x min a 命题热点一 命题热点二 命题热点三 命题热点四 对点训练2已知f x ax 1 a R 不等式f x 5的解集为 x x 2或x 3 1 求a的值 2 若不等式f x f k在R上有解 求k的取值范围 解 1 由 ax 1 5 得ax 4或ax5的解集为 x x 2或x0时 解得x 或x 则a 2 当a 0时 经验证不合题意 综上 a 2 命题热点一 命题热点二 命题热点三 命题热点四 命题热点一 命题热点二 命题热点三 命题热点四 不等式的证明 思考 不等式证明的常用方法有哪些 例3已知a 0 b 0 a3 b3 2 证明 1 a b a5 b5 4 2 a b 2 证明 1 a b a5 b5 a6 ab5 a5b b6 a3 b3 2 2a3b3 ab a4 b4 4 ab a2 b2 2 4 2 因为 a b 3 a3 3a2b 3ab2 b3 命题热点一 命题热点二 命题热点三 命题热点四 题后反思不等式证明的常用方法是 比较法 综合法与分析法 其中运用综合法证明不等式时 主要是运用基本不等式证明 与绝对值有关的不等式证明常用绝对值三角不等式 证明过程中一方面要注意不等式成立的条件 另一方面要善于对式子进行恰当的转化 变形 命题热点一 命题热点二 命题热点三 命题热点四 对点训练3 1 设a b 0 证明 3a3 2b3 3a2b 2ab2 2 证明 a6 8b6 2a2b2c2 3 若a b c为正实数 证明 a2 4b2 9c2 2ab 3ac 6bc 命题热点一 命题热点二 命题热点三 命题热点四 命题热点一 命题热点二 命题热点三 命题热点四 不等式的综合应用 思考 用什么定理或公式解决多变量代数式的最值问题 例4已知a b为正实数 命题热点一 命题热点二 命题热点三 命题热点四 题后反思基本不等式在解决多变量代数式的最值问题中有着重要的应用 运用基本不等式时应注意其条件 一正 二定 三相等 命题热点一 命题热点二 命题热点三 命题热点四 对点训练4设a 0 b 0 且a b 证明 1 a b 2 2 a2 a 2与b2 b 2不可能同时成立 即a b 2 2 假设a2 a0得0 a 1 同理 0 b 1 从而ab 1 这与ab 1矛盾 故a2 a 2与b2 b 2不可能同时成立 规律总结 拓展演练 1 解绝对值不等式常用的三种解题思路及应用的思想为 1 利用绝对值不等式的几何意义求解 体现数形结合思想 2 利用 零点分段法 求解 体现分类讨论思想 3 通过构建函数 利用函数图象求解 体现函数与方程思想 2 常用的证明不等式的方法 1 比较法 比较法包括作差比较法和作商比较法 2 综合法 利用某些已经证明过的不等式 例如算术平均数与几何平均数的定理 和不等式的性质 推导出所要证明的不等式 规律总结 拓展演练 3 分析法 证明不等式时 有时可以从求证的不等式出发 分析使这个不等式成立的充分条件 把证明不等式转化为判定这些充分条件是否具备的问题 如果能够肯定这些充分条件都已具备 那么就可以断定原不等式成立 4 反证法 可以从正难则反的角度考虑 即要证明不等式A B 先假设A B 由题设及其他性质推出矛盾 从而肯定A B 凡涉及的证明不等式为否定命题 唯一性命题或含有 至多 至少 不存在 不可能 等词语时 可以考虑用反证法 5 放缩法 要证明不等式A B成立 借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法 规律总结 拓展演练 1 设f x x 1 2 x 1 的最大值为m 1 求m 2 若a b c 0 a2 2b2 c2 m 求ab bc的最大值 解 1 当x 1时 f x 3 x 2 当 1 x 1时 f x 1 3x 2 当x 1时 f x x 3 4 故当x 1时 f x 取得最大值m 2 2 由 1 知a2 2b2 c2 2 a2 2b2 c2 a2 b2 b2 c2 2ab 2bc 2 ab bc 当且仅当a b c 时 等号成立 此时ab bc取得最大值1 规律总结 拓展演练 2 已知函数f x x a x 2 1 当a 3时 求不等式f x 3的解集 2 若f x x 4 的解集包含 1 2 求a的取值范围 当x 2时 由f x 3 得 2x 5 3 解得x 1 当2 x 3时 f x 3无解 当x 3时 由f x 3 得2x 5 3 解得x 4 故f x 3的解集为 x x 1或x 4 2 f x x 4 x 4 x 2 x a 当x 1 2 时 x 4 x 2 x a 4 x 2 x x a 2 a x 2 a 由条件得 2 a 1 且2 a 2 即 3 a 0 故满足条件的a的取值范围为 3 0 规律总结 拓展演练 3 若实数a b满足ab 0 且a2b 4 a b m恒成立 1 求m的最大值 2 若2 x 1 x a b对任意的a b恒成立 求实数x的取值范围 规律总结 拓展演练 4 2018全国 文23 设函数f x 5 x a x 2 1 当a 1时 求不等式f x 0的解集 2 若f x 1 求a的取值范围 可得f x 0的解集为 x 2 x 3 2 f x 1等价于 x a x 2 4 而 x a x 2 a 2 且当x 2时等号成立 故f x 1等价于 a 2 4 由 a 2 4可得a 6或a 2 所以a的取值范围是 6 2
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!