2019年六年级第三章分数除法的教案.doc

上传人:max****ui 文档编号:5699660 上传时间:2020-02-05 格式:DOC 页数:10 大小:51KB
返回 下载 相关 举报
2019年六年级第三章分数除法的教案.doc_第1页
第1页 / 共10页
2019年六年级第三章分数除法的教案.doc_第2页
第2页 / 共10页
2019年六年级第三章分数除法的教案.doc_第3页
第3页 / 共10页
点击查看更多>>
资源描述
2019年六年级第三章分数除法的教案一、教学内容主要内容包括:分数除法的意义与计算;分数除法的应用;比的意义与基本性质,求比值与化简比,以及比的应用。二、教学目标1.理解分数除法的意义,掌握分数除法的计算方法,会进行分数除法计算。2.会用方程或算术方法解答已知一个数的几分之几是多少求这个数的实际问题。3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。4.能运用比的知识解决有关的实际问题。三、具体编排1. 分数除法例1 (教学分数除法的意义)教材采用了整数与分数对比,乘法与除法对比的方式,揭示出分数除法的意义与整数除法的意义相同。首先由整数乘法的实际例子“每盒水果糖重100g,3盒有多重?”引入整数乘法,同时改编成用除法计算的问题,得出两个相应的除法算式。然后将其中的100g改成kg,引出一个分数乘法算式和两个分数除法算式。使学生看到这些问题无论涉及整数还是分数,都是已知两个因数的积与其中一个因数,求另一个因数的运算。“做一做”让学生根据已知的分数乘法算式,直接写出两个相应除法算式的商,旨在通过练习,巩固对分数除法意义的认识。例2 (教学分数除以整数)通过折纸帮助学生理解算理。分两个层次教学,先解决分子能被整数整除的特殊情况,即把一张纸的平均分成2份,看每份是这张纸的几分之几?再引出分子不能被整数整除的一般情况:把这张纸的平均分成3份,看每份是这张纸的几分之几?让学生经历由特殊到一般的过程,由此体会到用整数去除分数的分子的方法不是总能计算出得数,通常可以转化成乘这个整数的倒数,进一步渗透转化的数学思想。在此基础上让学生概括出分数除以整数的方法。例3(教学分数除以分数)例题以比较小明、小红两位同学“谁走得快些”引出两种情况。首先列式的依据是“路程时间速度”的数量关系,与以前不同的是路程、时间由整数换成了分数。由于学生对解决“谁走得快些”这类问题比较熟悉,所以由原来学习的整数除法算式,类推出分数除法算式不会感到困难。因而有利于集中精力投入计算方法的探索与理解。其中计算小明平均每小时走的路程“”是探索的重点。教材采用画线段图的直观方式展现推算的思路:已知小时走了2km,可以先求出小时走了1km,算式是;再求1小时即3个小时走了多少千米,算式是 3 。 由于数据简单,便于口算,整个推算过程处在学生思维能力的最近发展区内,加上线段图的直观效果,因此降低了学生探究算法、理解算理的难度。找到了整数除以分数的计算方法,就可以依次类推,再来解决分数除以分数的计算,即通过,求出小红平均每小时走的路程。最后教材以小精灵提问的方式,引导学生总结分数除法的一般方法,并启发学生用自己的方式加以表示。例4 (分数除法的混合运算)以小红剪彩带做花送同学为题材,通过解决实际问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。2. 解决问题例1 (已知一个数的几分之几是多少,求这个数)“已知一个数的几分之几是多少,求这个数”有两种情况:一种是是部分与整体之间的关系,可以在一条线段上表示;另一种是两个数量之间的关系,需要画出两条线段加以表示。它们是同一种数量关系,教材把它们放在同一题里,用同一个问题情境串联起来,比较自然,便于展开教学,也便于学生理解。教材以人体中水分与体重的关系为素材,引出问题。教材以插图的形式给出条件,图中医生介绍人体中水分与体重的关系。小明讲出两个已知条件。进而分别提出求小明、爸爸体重的两个问题。这里“成人体内的水分约占体重的”,是一个多余条件,需要学生通过审题、分析加以识别。由于在现实生活中,解决问题所需的条件,往往需要我们从各种信息里筛选出来,所以像例1这样有多余条件的问题情境,比较接近真实情况,有利于培养学生的信息识别能力。为了帮助学生分析、理解数量关系,教材分别画出了线段图。可分步出示条件和问题。通过对比让学生看到用方程解的优势。例2 (教学稍复杂的已知一个数的几分之几是多少,求这个数的问题)由学校兴趣小组为题材,引出“稍复杂的已知一个数的几分之几是多少,求这个数”的问题。以对话方式给出条件,再给出问题。为了帮助学生思考,教材提示“先画线段图看看”,并给出了完整的图示,为学生分析、理解等量关系提供直观支柱。然后由图得出等量关系,并据此列方程解答。解决这种数量关系的问题,可以列成形如的方程,也可以列成形如的方程,前者仍然要经历从“多几分之几”到“是几分之几”的转化,实际上是方程的形式,算术的思路。后者只要根据一个数加上增加部分等于增加后的数,就能列出方程。这样的等量关系,学生容易理解。因此,教材选择最简捷的思路,给出解题的全过程。3. 比和比的应用这部分内容过去是安排在小学最后阶段进行教学。由于比与分数有密切联系,把比的基础知识提前安排在分数除法单元中教学,既能加强知识间的内在联系,又可为以后学习比例、圆周率、百分数及其他方面的知识打下较好的基础。本节教材分成三段。比的意义传统的算术教材在讲比的意义时,只强调比的一种情况,即两个同类量的倍数关系。但在实际应用中,经常要用到比的另一种情况,如路程和时间的比(速度),质量和体积的比(密度)等。所以现在的小学数学教材,既讲同类量的比,又讲不同类量的比。当然,不同类的量相比,有关联的才行。这样,小学生进入中学后就便于理解物理等学科中经常出现的不同类量的比。教材选取我国第一艘载人飞船的有关内容作为引入比的载体,通过这一富有时代性的情节内容,引出同类量的比(介绍飞船里的两面长方形小旗,给出真实数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比)、非同类量的比(介绍飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出非同类量的比)。在此基础上概括比的意义。接着以这几个比为例,说明比的读、写及比的各部分名称,并计算出其中一个比的比值,说明“比值通常用分数表示”。然后根据分数与除法的关系,说明比也可以写成分数形式。最后,由小精灵提出问题,引导学生联系比与除法、分数的关系,同时思考比的后项可不可以为0。做一做第1题是根据条件和要求写出比并求比值的练习,用以巩固比的概念第2题是求未知的前项或后项的练习,旨在通过求比的未知项,从另一侧面理解比与除法的关系比的基本性质在比较两个量的关系时,可以把除法、比、分数看作是形式的不同,它们可以互相转化。比的基本性质可由商不变的性质和分数的基本性质导出。教材先让学生回顾商不变的性质和分数的基本性质,再启发学生联系比和除法、分数关系,思考:“比中有什么样的规律?”教材先利用比和除法的关系进行研究,然后让学生根据比和分数的关系来研究,在此基础上概括出比的基本性质。也可先猜测后验证。作为比的基本性质的直接应用,例1教学化简比。例1有两道题。第(1)题,化简整数比。仍采用“神舟五号”有关旗的题材,但讨论的是两面一大一小的联合国旗。题目已知两面旗的长和宽,要求这两面旗长和宽的最简单的整数比。这里的两个答案相同,渗透了两面旗按比例缩小的相似变换思想,同时也便于学生感悟化简的必要性,即能使数量关系更加简单明了。选取这一素材,既有思想性、趣味性,且数据真实,又有数学内涵。第(2)题化简分数、小数比。让学生结合具体例子总结:当一个比不是整数比时,如何化简比。比的应用在小学数学中,比的应用主要有两个内容,即比例尺和按比例分配。由于比例尺与比例的联系更多一些,且标准把比例尺归入空间与图形领域中,因此留在后面教学,这里只教学怎样解答按比例分配的实际问题。教材通过例2,以清洁剂浓缩液的稀释为例,提出问题,引导学生把一个数量按照已知的比分成两部分。例2创设了一个日常生活中比较常见的稀释清洁剂浓缩液的问题情境。教材首先通过一段文字说明稀释瓶上用不同颜色条形标明的比的含义,使学生了解按比配制的实际意义。然后由阿姨说明稀释的配制要求,并提出问题,再由两个同学讨论算法,引导学生思考。这里介绍了两种解法。一种是先求出每份是多少,再求几份是多少。即转化为整数的除法、乘法来解决。另一种是把比转化成每种成份占总数的几分之几,变成求一个数的几分之几是多少,用分数乘法来解决。做一做的第2题,教学把一个数量按照已知的比分成三部分的问题。黄金比在线段AB上,点C把线段AB分成两段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫线段AB的黄金分割点,AC与AB的比叫做黄金比,即。黄金分割具有艺术性、和谐性,蕴藏着丰富的美学价值。例如五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是因为在五角星中线段之间的长度关系符合黄金分割比。又如舞台上的报幕员以站在舞台长度的黄金分割点最美观,声音传播的最好。黄金比的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。四、教学建议1.注意相关知识的复习。本单元很多内容都与前面的知识有密切的联系,教学时,应当充分利用学生原有的知识基础,学习新内容。2.让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。附送:2019年六年级第二单元分数乘法及应用题典型练习题【知识分析】在整数计算时,正确、熟练地运用结合律、交换律、分配律,能简化计算。那么分数的运算也同样适合这些运算定律,今天我们就利用这些运算定律来简化分数的运算。【例题解读】【例1】【思路简析】仔细观察,我们发现有些分数可以凑成整数,计算的时候可以先把它们凑在一起在计算,这样计算就变的简单了,像这样凑在一起变成整数的方法,我们叫做凑整法。原式= =(5+15) =33【例2】【思路简析】这道题我们如果直接进行计算会比较麻烦,仔细观察发现170比169多了1,不妨把170拆成(169+1),然后利用乘法分配率来计算。原式= =19+ =【例3】【思路简析】仔细观察分子、分母中各个数的特点,可以考虑将分子变形。198819891=(1987+1)19891=19871989+1989-1=19871989+1988.这样分数的分子和分母就变成一样了,计算也就简单了。原式= = = =1【例4】【思路简析】这道题中的相邻两个分数之间相差,可以看成是等差数列,因此我们可以运用等差数列的求和公式来计算。原式= =1492 =24.5经典题型练习1、2、3、4、分数乘法应用题【知识分析】能识别求一个数的几分之几是多少的应用题的结构特征,分辨分数带单位和不带单位的区别。【例题解读】【例1】一根绳子长36米,第一次用去,第二次用去米,问还剩下多少米?【思路简析】分数不带单位表示两个数量的倍数关系,带单位表示一个具体的量,因此题中所给的两个表示不同意思,不能混为一谈。3636=26(米)。【例2】一件衣服原价100元,先降价,再涨价,问衣服现在的价格是多少?【思路简单析】这题先降价,再涨价,看似降价和涨价一样多,实际上是不一样的。第一次是在100元的基础上降价,第二次是在降价后的价格(90)上涨价,因此衣服的价格发生了变化。100(1)=90(元) 90(1+)=99(元)【例3】一篮子鸡蛋有81个,第一位顾客买走,第二位顾客买走剩下的,第三位顾客买走剩下的,第四位顾客买走剩下的,这时篮子里还剩多少个鸡蛋?【思路简析】把原来篮子里的鸡蛋看作单位“1”,那么第一次买走了总数的,第二次买走了总数的,第三次买走了总数的,第四次买走了总数的,也就是说每次买走的都是总数的,共买了四次,还剩下总数的。(个)【经典题型练习】1、 一根绳子长45米,第一次用去,第二次用去米,问还剩下多少米?2、 一根绳子原长20米,先剪去,再接上,问这根绳子现在是多少米?3、 一根绳子长20米,第一次剪去全长的,第二次剪去余下的,第三次剪去余下的,以此类推,第九次剪去最后余下的, 还剩下多少米?分数乘法专项训练一、 简便计算 二、 应用题1、 第一根绳子长40米,第二根比它多,第二根绳子长多少米?,2、 一条长3米的绳子剪去后,再剪去米,还剩下多少米?3、 小明看一本故事书,共有240页,第一天看了全部的,第二天看了全部的,第三天看了全部的她已经看了多少页?4、 一只猴子吃一堆桃子,第一天吃了全部的,第二天吃了余下的,第三天吃了余下的,以此类推,第六天吃了余下的,第七天吃了12个桃子,刚好把桃子吃完,问这堆桃子一共有多少个?5、 找规律: . .( )你有什么发现?
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!