2019-2020年小学奥数六年级《数的组成》经典专题点拨教案.doc

上传人:tia****nde 文档编号:5617880 上传时间:2020-02-03 格式:DOC 页数:9 大小:243KB
返回 下载 相关 举报
2019-2020年小学奥数六年级《数的组成》经典专题点拨教案.doc_第1页
第1页 / 共9页
2019-2020年小学奥数六年级《数的组成》经典专题点拨教案.doc_第2页
第2页 / 共9页
2019-2020年小学奥数六年级《数的组成》经典专题点拨教案.doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
2019-2020年小学奥数六年级数的组成经典专题点拨教案【数字组数】例1 用1、2、3、4、5、6、7、8、9这九个数字组成质数,如果每个数字都要用到,并且只能用一次,那么这九个数字最多能组成_个质数。(1990年全国小学数学奥林匹克决赛试题)讲析:自然数1至9这九个数字中,2、3、5、7本身就是质数。于是只剩下1、4、6、8、9五个数字,它们可组成一个两位质数和一个三位质数:41和689。所以,最多能组成六个质数。例2 用0、1、2、9这十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大。那么,这五个两位数的和是_。(1991年全国小学数学奥林匹克决赛试题)讲析:组成的五个两位数,要求和尽可能大,则必须使每个数尽可能大。所以它们的十位上分别是9、8、7、6、5,个位上分别是0、1、2、3、4。但要求五个两位数和为奇数,而1+2+3+4=10为偶数,所以应将4与5交换,使和为:(9+8+7+6+4)10+(1+2+3+5)=351。351即本题答案。例3 一个三位数,如果它的每一个数字都不超过另一个三位数对应数位上的数字,那么就称它被另一个三位数“吃掉”。例如,241被342吃掉,123被123吃掉(任何数都可以被与它相同的数吃掉),但240和223互不被吃掉。现请你设计出6个三位数,它们当中任何一个数不被其它5个数吃掉,并且它们的百位上数字只允许取1、2;十位上数字只允许取1、2、3;个位上数字只允许取1、2、3、4。这6个三位数是_。(第五届从小爱数学邀请赛试题)讲析:六个三位数中,任取两个数a和b,则同数位上的数字中,a中至少有一个数字大于b,而b中至少有一个数字大于a。当百位上为1时,十位上可从1开始依次增加1,而个位上从4开始依次减少1。即:114,123,132。当百位上为2时,十位上从1开始依次增加1而个位上只能从3开始依次减少1。即:213,222,231。经检验,这六个数符合要求。例4 将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字;两个2之间有两个数字;两个3之间有三个数字;两个4之间有四个数字。那么这样的八位数中的一个是_。(1991年全国小学数学奥林匹克初赛试题)讲析:两个4之间有四个数字,则在两个4之间必有一个数字重复,而又要求两个1之间有一个数,于是可推知,这个重复数字必定是1,即412134或421314。然后可添上另一个2和3。经调试,得23421314,此数即为所答。【条件数字问题】例1 某商品的编号是一个三位数,现有五个三位数:874,765,123,364,925。其中每一个数与商品编号,恰好在同一位上有一个相同的数字,那么这个三位数是_(1993年全国小学数学奥林匹克决赛试题)讲析:将五个数按百位、十位、个位上的数字分组比较,可发现:百位上五个数字都不同;十位上有两个2和两个6;个位上有两个4和两个5。故所求的数的个位数字一定是4或5,百位上一定是2或6。经观察比较,可知724符合要求。例2 给一本书编页码,共用了1500个数字,其中数字“3”共用了_个(首届现代小学数学)邀请赛试题)讲析:可先求出1500个数字可编多少页。从第一页到第9页,共用去9个数字;从第10页到第99页,共用去290=180(个)数字;余下的数字可编(1500-189)3=437(页)所以,这本书共有536页。l至99页,共用20个“3”,从100至199页共用20个“3”,从200至299页共用20个“3”,从300至399页共用去120个“3”,从400至499页共用去20个“3”,从500到536页共用去11个“3”。所以,共用去211个数字3。例3 在三位数中,数字和是5的倍数的数共有_个。(全国第四届“华杯赛”决赛口试试题)讲析:可把三位数100至999共900个数,从100起,每10个数分为一组,得(100,101、109),(110、111、119),(990、991、999)共分成了90组,而每组中有且只有两个数的数字和是5的倍数,所以一共有290=180(个)。例4 有四个数,取其中的每两个数相加,可以得到六个和。这六个和中最小的四个数是83、87、92、94,原因数中最小的是_。(上海市第五届小学数学竞赛试题)讲析:设原四个数从小到大为a、b、c、d,则有a+b=83,a+c=87,所以c比b大4。而对于和为92和94时,或者是b+c=92,或者是b+c=94。当b+c=92时,因c比b大4,可得b=45,进而可求得a=38。当b+c=94时,因c比b大4,可得b=44,进而可求得a=39。所以,原四数中最小的数是38或39。abcd=_(广州市小学数学竞赛试题)讲析:原四位数增加8倍后得新的四位数,也就是原四位数乘以9,得新四位数(如图5.29)。从而可知,a一定为1,否则积不能得四位数。则例6 有两个两位数,它们的个位数字相同,十位数字之和是11。这两个数的积的十位数字肯定不会是哪两个数字?(1990年小学生报小学数学竞赛试题)讲析:由题意可知,两个数的十位上为(2,9),(3,8),(4,7),(5,6),而个上则可以是0至9的任意一个数字。如果分别去求这两个数的积,那是很麻烦的。设这两个数的个位数字是c,十位数字分别为a、b,则a+b=11,两数分别为(10a+c),(10b+c)。字。能是6、8。例7 期的记法是用6个数字,前两个数字表示年份,中间两个数字表示月份,后两个数字表示日(如1976年4月5日记为760405)。第二届小学“祖杯赛”的竞赛日期记为921129。这个数恰好左右对称。因此这样的日期是“吉祥日”。问:从87年9月1日到93年6月30日,共有_个吉祥日。(第二届“祖冲之杯”小学数学竞赛试题)讲析:一个六位数从中间分开,要求左右对称,则在表示月份的两个数中,只有11月份。而且“年份”的个位数字只能是0、1、2。所以是共有3个吉祥日:901109、911119、921129。附送:2019-2020年小学奥数六年级数阵图经典专题点拨教案【方阵】例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。(长沙地区小学数学竞赛试题)讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。(l+2+3+9)3=15,则符合要求的每三数之和为15。显然,中间一数填“5”。再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。(“新苗杯”小学数学竞赛试题)讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。所以,能被12整除。十三个数之和为91,91除以12,商7余7,因此,应去掉7。每列为(917)4=21而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。三个奇数和为21的有两种:21=19+11=35+13。经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个22的正方形中四数之和相等。那么,这个和数的最小值是_。(1992年全国小学数学奥林匹克初赛试题)讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。它们的和是65。在三个22的正方形中,中间两个小正方形分别重复了两次。设中间两个小正方形分别填上a和b,则(65ab)之和必须是 3的倍数。所以,(ab)之和至少是7。故,和数的最小值是24。【其他数阵】例1 如图5.23,横、竖各12个方格,每个方格都有一个数。已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。图中已填入3、5、8和“”四个数,那么“”代表的数是_。(1994年全国小学数学奥林匹克初赛试题)讲析:可先看竖格。因为每相邻三格数字和为21,所以每隔两格必出现重复数字。从而容易推出,竖格各数从上而下是:3、10、8、3、10、8、3、10、8、3、10、8。同理可推导出横格各数,其中“”=5。例2 如图5.24,有五个圆,它们相交后相互分成九个区域,现在两个区域里已经分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圆内的数之和都是15。(上海市第五届小学数学竞赛试题)讲析:可把图中要填的数,分别用a、b、c、d、e、f、g代替。(如图5.25)显然a=5,g=9。则有:bc=10,ef=6,cde=15。经适当试验,可得b=3,c=7,d=6,e=2,f=4。例3 如图5.26,将六个圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。那么,这六个质数的积是_。(全国第一届“华杯赛”决赛试题)讲析:最上面的小三角形与中间的小三角形,都有两个共同的顶点,且每个小三角形顶点上三数之和相等。所以,最上边圆圈内数字与最下面中间圆圈内数字相等。同样,左下角与右边中间的数相等,右下角与左边中间数相等。202=10,102+3+5。所以,六个质数积为223355=900。例4 在图5.27的七个中各填上一个数,要求每条直线上的三个数中,中间一个数是两边两个数的平均数。现已填好两个数,那么X=_。(1992年全国小学数学奥林匹克决赛试题)讲析:如图5.28,可将圆圈内所填各数分别用a、b、c、d代替。则d=15。由15+c+a=17+c+b,得:a比b多2。所以,b=13+2=15。进而容易算出,x=19。例5 图5.29中8个顶点处标注的数字:a、b、c、d、e、f、g、h,其中的每一个数都等于相邻三个顶点(全国第三届“华杯赛”复赛试题)讲析:将外层的四个数,分别用含其它字母的式子表示,得 即(a+b+c+d)-(e+f+g+h)=0
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!