2019-2020年小学奥数《几何图形的计数》经典专题点拨教案.doc

上传人:tia****nde 文档编号:5560027 上传时间:2020-02-02 格式:DOC 页数:7 大小:94KB
返回 下载 相关 举报
2019-2020年小学奥数《几何图形的计数》经典专题点拨教案.doc_第1页
第1页 / 共7页
2019-2020年小学奥数《几何图形的计数》经典专题点拨教案.doc_第2页
第2页 / 共7页
2019-2020年小学奥数《几何图形的计数》经典专题点拨教案.doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
2019-2020年小学奥数几何图形的计数经典专题点拨教案【点与线的计数】例1如图5.45,每相邻的三个圆点组成一个小三角形,问:图中是这样的小三解形个数多还是圆点的个数多?(全国第二届“华杯赛”决赛试题)讲析:可用“分组对应法”来计数。将每一排三角形个数与它的下行线进行对应比较。第一排三角形有1个,其下行线有2点;第二排三角形有3个,其下行线有3点;第三排三角形有5个,其下行线有4点;以后每排三角形个数都比它的下行线上的点多。所以是小三角形个数多。例2 直线m上有4个点,直线n上有5个点。以这些点为顶点可以组成多少个三角形?(如图5.46)(哈尔滨市第十一届小学数学竞赛试题)讲析:本题只要数出各直线上有多少条线段,问题就好解决了。直线n上有5个点,这5点共可以组成43+21=10(条)线段。以这些线段分别为底边,m上的点为顶点,共可以组成410=40(个)三角形。同理,m上4个点可以组成6条线段。以它们为底边,以n上的点为顶点可以组成65=30(个)三角形。所以,一共可以组成70个三角形。【长方形与三角形的计数】例1图5.47中的正方形被分成9个相同的小正方形,它们一共有16个顶点,以其中不在一条直线上的3点为顶点,可以构成三角形。在这些三角形中,与阴影三角形有同样大小面积的有多少个?(全国第三届“华杯赛”复赛试题)为3的三角形,或者高为2,底为3的三角形,都符合要求。底边长为2,高为3的三角形有244=32(个);高为2,底边长为3的三角形有82=16(个)。所以,包括图中阴影部分三角形共有48个。例2 图5.48中共有_个三角形。(现代小学数学)邀请赛试题)讲析:以AB边上的线段为底边,以C为顶点共有三角形6个;以AB边上的线段为底边,分别以G、H、F为顶点共有三角形3个;以BD边上的线段为底边,以C为顶点的三角形共有6个。所以,一共有15个三角形。例3 图5.49中共有_个正方形。(现代小学数学邀请赛试题)讲析:可先来看看图5.50的两个图中,各含有多少个正方形。图5.50(1)中,正方形个数是635241=32(个);图5.50(2)中,正方形个数是44+33+2211=30(个)如果把图5.49中的图形,分成56和411两个长方形,则:56的长方形中共有正方形56+45342312=70(个);411的长方形中共有正方形411+310+2918=100(个)。两个长方形相交部分45的长方形中含有正方形45+342312=40(个)。所以,原图中共有正方形70100-40=130(个)。例4 平面上有16个点,排成一个正方形。每行、每列上相邻两点的距离都相等如图5.51(1),每个点上钉上钉子。以这些点为顶点,用线将它们围起来,一共可围成_个正方形。(小学生科普报奥林匹克通讯赛试题)讲析:能围成图5.51(2)的正方形共14(个);能围成图5.51(3)的正方形共2(个);能围成图5.51(4)的正方形共4(个)。所以,一共可围成正方形20个。【立体图形的计数】例1 用125块体积相等的黑、白两种正方体,黑白相间地拼成一个大正方体(如图5.52)。那么,露在表面上的黑色正方体的个数是_。(1991年全国小学数学奥林匹克决赛试题)讲析:本题要注意不能重复计数。八个顶点上各有一个黑色正方体,共8个;每条棱的中间有一个黑色正方体,共12个;除上面两种情况之外,每个面有5个黑色正方体,共56=30(个)。所以,总共有50个黑色正方体露在表面上。例2 把1个棱长为3厘米的正方体分割成若干个小正方体,这些小正方体的棱长必须是整数。如果这些小正方体的体积不要求都相等,那么,最少可以分割成_个小正方体。(北京市第九届“迎春杯小学数学竞赛试题)讲析:若分成的小正方体,则共可分成27个。但是分割时,要求正方体尽可能地少,也就是说能分成大正方体的,尽可能地分。则在开始的时候,可分出一个222的正方体(如图5.53),余下的都只能分成111的正方体了。所以,最少可分成20个小正方体。附送:2019-2020年小学奥数和差积商的变化规律经典专题点拨教案【和的变化规律】(1)如果一个加数增加(或减少)一个数,另一个加数不变,那么它们的和也增加(或减少)同一个数。用字母表达就是如果a+b=c,那么(a+d)+b=c+d;(a-d)+b=c-d。(2)如果一个加数增加一个数,另一个加数减少同一个数,那么它们的和不变。用字母表达就是如果a+b=c,那么(a+d)+(b-d)=c。【差的变化规律】(1)如果被减数增加(或减少)一个数,减数不变,那么,它们的差也增加(或减少)同一个数。用字母表达,就是如果a-b=c,那么(a+d)-b=c+d,(a-d)-b=c-d。(ad+b)(2)如果减数增加(或减少)一个数,被减数不变,那么它们的差反而减少(或增加)同一个数。用字母表达,就是如果a-b=c,那么a-(b+d)=c-d(ab+d),a-(b-d)=c+d。(3)如果被减数和减数都增加(或都减少)同一个数,那么,它们的差不变。用字母表达,就是如果a-b=c,那么(a+d)-(b+d)=c,(a-d)-(b-d)=c。【积的变化规律】(1)如果一个因数扩大(或缩小)若干倍,另一个因数不变,那么,它们的积也扩大(或缩小)同样的倍数。用字母表达,就是如果ab=c,那么(an)b=cn,(an)b=cn。(2)如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。用字母表达,就是如果ab=c,那么(an)(bn)=c,或(an)(bn)=c。【商或余数的变化规律】(1)如果被除数扩大(或缩小)若干倍,除数不变,那么它们的商也扩大(或缩小)同样的倍数。用字母表达,就是如果ab=q,那么(an)b=qn,(an)b=qn。(2)如果除数扩大(或缩小)若干倍,被除数不变,那么它们的商反而缩小(或扩大)同样的倍数。用字母表达,就是如果ab=q,那么a(bn)=qn,a(bn)=qn。(3)被除数和除数都扩大(或都缩小)同样的倍数,那么它们的商不变。用字母表达,就是如果ab=q,那么(an)(bn)=q,(an)(bn)=q。(4)在有余数的除法中,如果被除数和除数都扩大(或都缩小)同样的倍数,不完全商虽然不变,但余数却会跟着扩大(或缩小)同样的倍数。这一变化规律用字母表示,就是如果ab=q(余r),那么(an)(bn)=q(余rn),(an)(bn)=q(余rn)。例如,849=93,而(842)(92)=96(32),(843)(93)=91(33)。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!