2019届高考数学二轮复习 专题六 第1讲 选修4-4 坐标系与参数方程学案.docx

上传人:xt****7 文档编号:4600104 上传时间:2020-01-10 格式:DOCX 页数:12 大小:36.69KB
返回 下载 相关 举报
2019届高考数学二轮复习 专题六 第1讲 选修4-4 坐标系与参数方程学案.docx_第1页
第1页 / 共12页
2019届高考数学二轮复习 专题六 第1讲 选修4-4 坐标系与参数方程学案.docx_第2页
第2页 / 共12页
2019届高考数学二轮复习 专题六 第1讲 选修4-4 坐标系与参数方程学案.docx_第3页
第3页 / 共12页
点击查看更多>>
资源描述
第1讲选修4-4坐标系与参数方程高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识1直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(,),则2直线的极坐标方程若直线过点M(0,0),且极轴到此直线的角为,则它的方程为sin()0sin(0)几个特殊位置的直线的极坐标方程:(1)直线过极点:;(2)直线过点M(a,0)(a0)且垂直于极轴:cosa;(3)直线过M且平行于极轴:sinb3圆的极坐标方程几个特殊位置的圆的极坐标方程:(1)当圆心位于极点,半径为r:r;(2)当圆心位于M(r,0),半径为r:2rcos;(3)当圆心位于M,半径为r:2rsin4直线的参数方程经过点P0(x0,y0),倾斜角为的直线的参数方程为(t为参数)设P是直线上的任一点,则t表示有向线段的数量5圆、椭圆的参数方程(1)圆心在点M(x0,y0),半径为r的圆的参数方程为(为参数,02)(2)椭圆1的参数方程为(为参数)热点一曲线的极坐标方程【例1】(2019呼和浩特期中)在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,曲线的极坐标方程为,曲线的极坐标方程为()求与的直角坐标方程;()若与的交于点,与交于、两点,求的面积解()曲线的极坐标方程为,根据题意,曲线的普通方程为曲线的极坐标方程为,曲线的普通方程为,即,()曲线的极坐标方程为,曲线的普通方程为,联立与:,得,解得,点的坐标,点到的距离.设,将代入,得,则,,探究提高进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:xcos ,ysin ,2x2y2,tan (x0),要注意,的取值范围及其影响,灵活运用代入法和平方法等技巧【训练1】(2017北京东城区调研)在极坐标系中,已知极坐标方程C1:cos sin 10,C2:2cos(1)求曲线C1,C2的直角坐标方程,并判断两曲线的形状;(2)若曲线C1,C2交于A,B两点,求两点间的距离解(1)由C1:cos sin 10,xy10,表示一条直线由C2:2cos ,得22cos x2y22x,则(x1)2y21,C2是圆心为(1,0),半径r1的圆(2)由(1)知,点(1,0)在直线xy10上,因此直线C1过圆C2的圆心两交点A,B的连线段是圆C2的直径,因此两交点A,B间的距离|AB|2r2热点二参数方程及其应用【例2】(2019湖北联考)在直角坐标系中,曲线(为参数),直线(为参数),以为极点,轴的非负半轴为极轴建立极坐标系. (1)求曲线与直线l的极坐标方程(极径用表示,极角用表示);(2)若直线与曲线相交,交点为、,直线与轴也相交,交点为,求的取值范围.解(1)曲线,即,即,即或,由于曲线过极点,曲线的极坐标方程为直线,即,即,即,直线的极坐标方程为;(2)由题得,设为线段的中点,圆心到直线的距离为,则它在时是减函数,的取值范围探究提高1将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件2在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解【训练2】(2017郴州三模)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系(1)写出直线l的普通方程以及曲线C的极坐标方程;(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM|PN|的值解(1)直线l的参数方程为(t为参数),消去参数t,得xy10曲线C的参数方程为(为参数),利用平方关系,得x2(y2)24,则x2y24y0令2x2y2,ysin ,代入得C的极坐标方程为4sin (2)在直线xy10中,令y0,得点P(1,0)把直线l的参数方程代入圆C的方程得t23t10,t1t23,t1t21由直线参数方程的几何意义,|PM|PN|t1t2|11(2018全国I卷)在直角坐标系中,曲线的方程为以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程2(2018全国II卷)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数)(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率1(2016全国卷)在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin2(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标2(2017哈尔滨模拟)已知曲线C的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin4(1)写出曲线C的极坐标方程和直线l的普通方程;(2)若射线与曲线C交于O,A两点,与直线l交于B点,射线与曲线C交于O,P两点,求PAB的面积1(2017新乡三模)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为4cos ,曲线M的直角坐标方程为x2y20(x0)(1)以曲线M上的点与点O连线的斜率k为参数,写出曲线M的参数方程;(2)设曲线C与曲线M的两个交点为A,B,求直线OA与直线OB的斜率之和2(2019厦门期末)在同一直角坐标系中,经过伸缩变换后,曲线变为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求和的直角坐标方程;(2)过点作的垂线交于两点,点在轴上方,求参考答案1【解题思路】(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到所满足的关系式,从而求得结果.【答案】(1)由可得:,化为(2)由(1)知是圆心为,半径为的圆,由题设知,是过点且关于轴对称的两条射线记轴右边的射线为,轴左边的射线为由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与没有公共点综上,所求的方程为2【解题思路】(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率【答案】(1)曲线的直角坐标方程为,当时,的直角坐标方程为,当时,的直角坐标方程为(2)将的参数方程代入的直角坐标方程,整理得关于的方程因为曲线截直线所得线段的中点在内,所以有两个解,设为,则又由得,故,于是直线的斜率1【解题思路】(1)曲线C1利用消参,曲线C2利用化为直角坐标方程(2)利用点到直线距离公式,曲线C1直接用参数方程,用三角函数求其最值【答案】解(1)C1的普通方程为y21,曲线C2的直角坐标方程为xy40(2)由题意,可设点P的直角坐标为(cos ,sin )因为C2是直线,所以|PQ|的最小值即为P到C2的距离d()的最小值又d(),当且仅当2k(kZ)时,d()取得最小值,最小值为,此时点P的直角坐标为2【解题思路】(1)曲线C1利用消参,曲线C2利用化为直角坐标方程(2)分别联立求出A,B,P的坐标【答案】解(1)由(为参数),消去普通方程为(x2)2y24从而曲线C的极坐标方程为24cos 0,即4cos ,因为直线l的极坐标方程为sin4,即sin cos 4,直线l的直角坐标方程为xy80(2)依题意,A,B两点的极坐标分别为,联立射线与曲线C的极坐标方程,得P点极坐标为,|AB|2,SPAB22sin21【解题思路】 (1);(2)联立曲线M的参数方程和曲线C的直角坐标方程,韦达定理【答案】解(1)由得故曲线M的参数方程为(2)由4cos ,得24cos ,x2y24x将代入x2y24x整理得k24k30,k1k24故直线OA与直线OB的斜率之和为42【解题思路】(1)将代入得,即可得到曲线的方程;由,代入即可得到直线的直角坐标方程;(2)由题意,得过点的垂线的参数方程为(为参数),代入曲线的方程,根据参数的几何意义,即可求解.【答案】(1)将代入得,曲线的方程为,由得,因为,代入上式得直线l的直角坐标方程为;(2)因为直线的倾斜角为,所以其垂线的倾斜角为,过点的垂线的参数方程为,即(为参数)代入曲线的方程整理得,设两点对应的参数为(由题意知,)则,且,所以.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!