2019-2020年八年级数学下册 19.3 梯形(二)教案 人教新课标版.doc

上传人:tian****1990 文档编号:3358276 上传时间:2019-12-12 格式:DOC 页数:5 大小:146KB
返回 下载 相关 举报
2019-2020年八年级数学下册 19.3 梯形(二)教案 人教新课标版.doc_第1页
第1页 / 共5页
2019-2020年八年级数学下册 19.3 梯形(二)教案 人教新课标版.doc_第2页
第2页 / 共5页
2019-2020年八年级数学下册 19.3 梯形(二)教案 人教新课标版.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年八年级数学下册 19.3 梯形(二)教案 人教新课标版教学目标知识与技能1. 通过探究教学,使学生掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法,及其此判定方法的证明2能够运用等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想,数学建模的思想,会用分析法寻求证明题思路,从而进一步培养学生的分析能力和计算能力3通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想过程与方法经历探索梯形的判定条件的过程,发展学生合情推理能力.情感态度与价值观增强主动探索意识,发展合情推理思维,体会逻辑思维训练在实际问题中的价值.重点掌握等腰梯形的判定方法并能运用难点等腰梯形判定方法的运用备 注教学过程 与 师生互动第一步:温习故知第二步:学习新知:【提出问题】:前面所学的特殊四边形的判定基本上是性质的逆命题等腰梯形同一底上两个角相等的逆命题是什么? 命题:同一底上的两个角相等的梯形是等腰梯形问:这个命题是否成立?能否加以证明,引导学生写出已知、求证启发:能否转化为特殊四边形或三角形,鼓励学生大胆猜想,和求证已知:如图,在梯形ABCD中,ADBC,B=C求证:AB=CD分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,命题就容易证明了 图一证明方法一:过点D作DEAB交BC于点F,得到DECABDE, B=1,B=C, 1=CDEDC又ADBC,DEAB=DC证明时,可以仿照性质证明时的分析,来启发学生添加辅助线DE证明方法二:用常见的梯形辅助线方法:过点A作AEBC, 过D作DFBC,垂足分别为E、F(见图一)图二证明方法三:延长BA、CD相交于点E(见图二) 通过证明:验证了命题的正确性,从而得到:等腰梯形判定方法 等腰梯形判定方法 在同一底上的两个角相等的梯形是等腰梯形 几何表达式:梯形ABCD中,若B=C,则AB=DC【注意】等腰梯形的判定方法: 先判定它是梯二形,再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形第三步:应用举例:例1(教材P119的例2)例2(补充) 证明:对角线相等的梯形是等腰梯形已知:如图,梯形ABCD中,对角线AC=BD求证:梯形ABCD是等腰梯形分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形在ABC和DCB中,已有两边对应相等,要能证1=2,就可通过证ABC DCB得到AB=DC证明:过点D作DEAC,交BC的延长线于点E,又 ADBC, 四边形ACED为平行四边形, DE=AC AC=BD , DE=BD 1=E 2=E , 1=2 又 AC=DB,BC=CE, ABCDCB AB=CD 梯形ABCD是等腰梯形说明:如果AC、BD交于点O,那么由1=2可得OB=OC,OA=OD ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路问:能否有其他证法,引导学生作出常见辅助线,如图,作AEBC,DFBC,可证 RtABCRtCAE,得1=2 例3(补充) 已知:如图,点E在正方形ABCD的对角线AC上,CFBE交BD于G,F是垂足求证:四边形ABGE是等腰梯形分析:先证明OEOG,从而说明OEG45,得出EGAB,由AE,BG延长交于O,显然EGAB得出四边形ABGE是梯形,再利用同底上的两角相等得出它为等腰梯形例4 (补充)画一等腰梯形,使它上、下底长分别4cm、12cm,高为3cm,并计算这个等腰梯形的周长和面积分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形如图,先算出AB长,可画等腰三角形ABE,然后完成 AECD的画图画法:画ABE,使BE=124=8cm . 延长BE到C使EC=4cm. 分别过A、C作ADBC ,CDAE,AD、CD交于点D四边形ABCD就是所求的等腰梯形解:梯形ABCD周长4125226cm 答:梯形周长为26cm,面积为24例5:.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积. (方法一,过点C作CEAD,再作等腰三角形BCE的高CF,可知CF=4cm.然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在RtAGD中求出高DG=4cm. )第四步:随堂练习1下列说法中正确的是( )(A)等腰梯形两底角相等 (B)等腰梯形的一组对边相等且平行(C)等腰梯形同一底上的两个角都等于90度(D)等腰梯形的四个内角中不可能有直角2已知等腰梯形的周长25cm,上、下底分别为7cm、8cm,则腰长为_cm3已知等腰梯形中的腰和上底相等,且一条对角线和一腰垂直,求这个梯形的各个角的度数4已知,如图,在四边形ABCD中,ABDC,1=2,AC=BD,求证:四边形ABCD是等腰梯形(略证 ,AD=BC, , ABDC)5已知,如图,E、F分别是梯形ABCD的两底AD、BC的中点,且EFBC,求证:梯形ABCD是等腰梯形第五步:课后练习1等腰梯形一底角,上、下底分别为8,18,则它的腰长为_,高为_,面积是_2梯形两条对角线分别为15,20,高为12,则此梯形面积为_3已知:如图,在四边形ABCD中,B=C,AB与CD不平行,且AB=CD求证:四边形ABCD是等腰梯形4如图4.9-9,梯形ABCD中,ABCD,AD=BC,CEAB于E,若ACBD于G求证:CE=(AB+CD)第六步:课堂小结 等腰梯形的判定方法:一般是先判定一个四边形是梯形,然后再用“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形判定一个四边形是梯形时,根据梯形定义,判定另两边不平行比较困难,可以通过判定平行的两边不相等来说明梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形(三角形奠基法)课后反思 :
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!