2019-2020年高中数学总复习(3)文(含解析)新人教版必修5.doc

上传人:tian****1990 文档编号:3207741 上传时间:2019-12-08 格式:DOC 页数:2 大小:24.50KB
返回 下载 相关 举报
2019-2020年高中数学总复习(3)文(含解析)新人教版必修5.doc_第1页
第1页 / 共2页
2019-2020年高中数学总复习(3)文(含解析)新人教版必修5.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学总复习(3)文(含解析)新人教版必修53.设等差数列的首项及公差d都为整数,前n项和为(1)若,求数列的通项公式;(2)若,求所有可能的数列的通项公式【解析】:(1)由,即,解得因此,的通项公式是;(2)由,得,即由+,得,即由+,得,即所以又,故将代入、,得又,故或所以,数列的通项公式是或品:利用等差(比)数列的定义构造方程(组)或不等式(组)是常用的解题方法4.设数列满足,证明为等差数列的充要条件是为等差数列且【解析】:必要性:设是公差为的等差数列,则易知成立由递推关系(常数)(n=1,2,3,)所以数列为等差数列充分性:设数列是公差为的等差数列,且,由,得,从而有,得,由得,由此不妨设, 则(常数)由此从而,两式相减得因此(常数)(n=1,2,3,),即数列为等差数列品:利用递推关系式是解决数列问题的重要方法,要熟练掌握等差数列的定义、通项公式5.已知数列满足(1)求数列的通项公式;(2)若,证明是等差数列【解析】:(1),是以为首项,2为公比的等比数列,即;(2),利用的通项公式,有构建递推关系,得,从而有,得,即故是等差数列方法:由递推式求数列的通项,常常构造新的辅助数列为等差或等比数列,用迭代法、累加法或累乘法求其通项
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!