资源描述
2019-2020年高考数学一轮复习 9.1随机抽样课时跟踪训练 文一、选择题1(xx湖南卷)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()Ap1p2p3 Bp2p3p1Cp1p3p2 Dp1p2p3解析:由随机抽样的要求,知p1p2p3,故选D.答案:D2现要完成下列3项抽样调查:从10盒酸奶中抽取3盒进行食品卫生检查;科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众报告会结束后,为了听取意见,需要请32名听众进行座谈;东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本较为合理的抽样方法是()A简单随机抽样,系统抽样,分层抽样B简单随机抽样,分层抽样,系统抽样C系统抽样,简单随机抽样,分层抽样D分层抽样,系统抽样,简单随机抽样解析:总体较少,宜用简单随机抽样;已分段,宜用系统抽样;各层间差距较大,宜用分层抽样,故选A.答案:A3某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查现将800名学生从1到800进行编号已知3348这16个数中抽到的数是39,则在第1小组116中随机抽到的数是()A5 B7 C11 D13解析:间隔数k16,即每16人抽取一个人由于392167,所以第1小组中抽取的数为7.故选B.答案:B4(xx广东卷)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A50 B40 C25 D20解析:根据系统抽样的特点可知分段间隔为25,故选C.答案:C5将参加夏令营的600名学生编号为:001,002,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A营区,从301到496在B营区,从496到600在C营区,三个营区被抽中的人数依次为()A26,16,8 B25,17,8C25,16,9 D24,17,9解析:依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN*)组抽中的号码是312(k1)令312(k1)300,得k,因此A营区被抽中的人数是25;令300312(k1)495,得k42,因此B营区被抽中的人数是422517.结合各选项知,选B.答案:B6某高中在校学生2 000人,高一年级与高二年级人数相同并都比高三年级多1人为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:高一年级高二年级高三年级跑步abc登山xyz其中abc235,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二年级参与跑步的学生中应抽取()A36人 B60人 C24人 D30人解析:登山的占总数的,故跑步的占总数的,又跑步中高二年级占.高二年级跑步的占总人数的.由得x36,故选A.答案:A二、填空题7某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生解析:根据分层抽样的特点,可得高二年级学生人数占学生总人数的,因此在样本中,高二年级的学生所占比例也应该为,故应从高二年级抽取5015(名)学生答案:158大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为_解析:因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为恰当答案:简单随机抽样9一个总体中有100个个体,随机编号为0,1,2,99,依编号顺序平均分成10个小组,组号依次为1,2,3,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与mk的个位数字相同若m6,则在第7组中抽取的号码是_解析:第7组中号码的十位数字为6.又mk6713,由规定知抽取号码的个位数字为3,所以抽取号码为63.答案:63三、解答题10为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;每个班抽取1人,共计20人,考察这20名学生的成绩;把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?(3)试写出上面的第三种方式抽取样本的步骤解:(1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法(3)第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次第二步,确定各个层次抽取的人数因为样本容量与总体的个体数之比为:1001 000110,所以在每个层次中抽取的个体数依次为,即15,60,25.第三步,按层次分别抽取在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人11一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程解:21210110,2,4,15.应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家抽样过程:(1)计算抽样比;(2)计算各类百货商店抽取的个数:2,4,15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家;(4)将抽取的个体合在一起,就构成所要抽取的一个样本12某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解:总体容量为6121836.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为6,技术员人数为12,技工人数为18,所以n应是6的倍数,36的约数,即n6,12,18.当样本容量为(n1)时,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6.即样本容量n6.
展开阅读全文