2019-2020年高三上学期第二次自主练习数学(文)试卷含解析.doc

上传人:tia****nde 文档编号:2920495 上传时间:2019-12-04 格式:DOC 页数:15 大小:111.50KB
返回 下载 相关 举报
2019-2020年高三上学期第二次自主练习数学(文)试卷含解析.doc_第1页
第1页 / 共15页
2019-2020年高三上学期第二次自主练习数学(文)试卷含解析.doc_第2页
第2页 / 共15页
2019-2020年高三上学期第二次自主练习数学(文)试卷含解析.doc_第3页
第3页 / 共15页
点击查看更多>>
资源描述
2019-2020年高三上学期第二次自主练习数学(文)试卷含解析一、选择题:(本大题共10小题,每小题5分,共50分.在每题给出的四个选项中,只有一个是符合题目要求的.)1设U=1,2,3,4,5,A=1,2,3,B=2,3,4,则下列结论中正确的是()AAB BAB=2CAB=1,2,3,4,5 DAUB=12(若a=0.53,b=30.5,c=log30.5,则a,b,c,的大小关系是()AbacBbcaCabcDcba3下列命题中,假命题是()AxR,2x10BxR,sinx=CxR,x2x+10DxR,lgx=24f(x)=+log2x的一个零点落在下列哪个区间()A(0,1)B(1,2)C(2,3)D(3,4)5若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()Alog2xBCD2x26函数y=e|lnx|x1|的图象大致是()ABCD7已知函数y=f(x)(xR)满足f(x+2)=f(x),且x(1,1时,f(x)=|x|,则y=f(x)与y=log7x的交点的个数为()A4B5C6D78若函数f(x)=lg(x2+axa1)在区间2,+)上单调递增,则实数a的取值范围是()A(3,+)B3,+)C(4,+)D4,+)9曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为()Ae2B2e2Ce2De210设函数f(x),g(x)在a,b上均可导,且f(x)g(x),则当axb时,有()Af(x)g(x)Bf(x)+g(a)g(x)+f(a)Cf(x)g(x)Df(x)+g(b)g(x)+f(b)二、填空题:(本大题5小题,每小题5分,共25分)11函数f(x)=(m2m1)是幂函数,且在区间(0,+)上为减函数,则实数m的值为12=13函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是14已知函数f(x)=若f(x)在(,+)上单调递增,则实数a的取值范围为15定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且在1,0上是增函数,下面是关于函数f(x)的判断:f(x)的图象关于点P(,0)对称; f(x)的图象关于直线x=1对称;f(x)在0,1上是增函数; f(2)=f(0)其中正确的判断有(把你认为正确的判断都填上)三、解答题:(本大题共6题,满分75分解答须写出文字说明、证明过程和演算步骤)16已知函数f(x)=的定义域为集合A,B=x|xa(1)若AB,求实数a的取值范围;(2)若全集U=x|x4,a=1,求UA及A(UB)17已知aR,设命题p:函数f(x)=ax是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R若“pq”是真命题,“pq”是假命题,求实数a的取值范围18已知函数(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x3,+)上为增函数,求a的取值范围19已知函数是定义在(1,1)上的奇函数,且(1)求函数f(x)的解析式;(2)判断f(x)的单调性,并证明你的结论;(3)解不等式f(t1)+f(t)020有两个投资项目A,B,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元)(1)分别将A,B两个投资项目的利润表示为投资B=x|xa(万元)的函数关系式;(2)现将x(0x10)万元投资A项目,10x万元投资B项目h(x)表示投资A项目所得利润与投资B项目所得利润之和求h(x)的最大值,并指出x为何值时,h(x)取得最大值21已知函数f(x)=x2+axlnx,aR(1)若函数f(x)在1,2上是减函数,求实数a的取值范围;(2)令g(x)=f(x)x2,是否存在实数a,当x(0,e(e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由四、附加题22已知函数f(x)=x3x()判断的单调性;()求函数y=f(x)的零点的个数;()令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围xx学年山东省威海市乳山一中高三(上)第二次自主练习数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分.在每题给出的四个选项中,只有一个是符合题目要求的.)1设U=1,2,3,4,5,A=1,2,3,B=2,3,4,则下列结论中正确的是()AABBAB=2CAB=1,2,3,4,5DAUB=1考点: 补集及其运算;交集及其运算专题: 计算题分析: 先求出集合的补集,看出两个集合的公共元素,做出两个集合的交集,得到结果解答: 解:UB=1,5,A=1,2,3,AUB=1故选D点评: 本题考查两个集合之间的运算,是一个基础题,本题解题的关键是先写出集合的补集,在求两个集合的交集2(若a=0.53,b=30.5,c=log30.5,则a,b,c,的大小关系是()AbacBbcaCabcDcba考点: 对数值大小的比较专题: 函数的性质及应用分析: 利用指数函数与对数函数的单调性即可得到解答: 解:0a=0.531,b=30.51,c=log30.50,bac故选:A点评: 本题考查了指数函数与对数函数的单调性,属于基础题3下列命题中,假命题是()AxR,2x10BxR,sinx=CxR,x2x+10DxR,lgx=2考点: 特称命题;全称命题;命题的真假判断与应用专题: 简易逻辑分析: 1先理解特称命题与全称命题及存在量词与全称量词的含义,再进行判断2用符号“x”表示“对任意x”,用符号“x”表示“存在x”含有全称量词的命题就称为全称命题,含有存在量词的命题称为特称命题解答: 解:由指数函数y=2x的图象与性质易知,xR,2x10,故选项A为真命题由正弦函数y=sinx的有界性知,1sinx1,所以不存在xR,使得sinx=成立,故选项B为假命题由x2x+1=0知,xR,x2x+10,故选项C为真命题由lgx=2知,x=102=100,即存在x=100,使lgx=2,故选项D为真命题综上知,答案为B点评: 1像“所有”、“任意”、“每一个”等量词,常用符号“”表示;“有一个”、“有些”、“存在一个”等表示部分的量词,常用符号“”表示全称命题的一般形式为:xM,p(x);特称命题的一般形式为:x0M,p(x0)2判断全称命题为真,需由条件推出结论,注意应满足条件的任意性;判断全称命题为假,只需根据条件举出一个反例即可判断特称命题为真,只需根据条件举出一个正例即可;判断特称命题为假,需由条件推出矛盾才行4f(x)=+log2x的一个零点落在下列哪个区间()A(0,1)B(1,2)C(2,3)D(3,4)考点: 函数零点的判定定理专题: 计算题分析: 根据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果解答: 解:根据函数的实根存在定理得到f(1)f(2)0故选B点评: 本题考查函数零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题5若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()Alog2xBCD2x2考点: 反函数专题: 计算题分析: 求出y=ax(a0,且a1)的反函数即y=f(x),将已知点代入y=f(x),求出a,即确定出f(x)解答: 解:函数y=ax(a0,且a1)的反函数是f(x)=logax,又f(2)=1,即loga2=1,所以,a=2,故f(x)=log2x,故选A点评: 本题考查指数函数与对数函数互为反函数、考查利用待定系数法求函数的解析式6函数y=e|lnx|x1|的图象大致是()ABCD考点: 函数的图象专题: 函数的性质及应用分析: 根据函数y=e|lnx|x1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案解答: 解:由y=e|lnx|x1|可知:函数过点(1,1),当0x1时,y=elnx1+x=+x1,y=+10y=elnx1+x为减函数;若当x1时,y=elnxx+1=1,故选:D点评: 本题主要考查函数的图象,熟练掌握函数的求导与函数单调性的关系,是解答的关键7已知函数y=f(x)(xR)满足f(x+2)=f(x),且x(1,1时,f(x)=|x|,则y=f(x)与y=log7x的交点的个数为()A4B5C6D7考点: 函数的周期性;抽象函数及其应用专题: 函数的性质及应用分析: 先根据函数的周期性画出函数f(x)的图象,再画出对数函数y=log7x 的图象,数形结合即可得交点个数解答: 解:f(x+2)=f(x),可得 f(x+2)=f(x),即函数f(x)为以2为周期的周期函数,又x1,1时,f(x)=|x|,函数f(x)的图象如图,函数y=log7x的图象如图,数形结合可得交点共有6个故选:C点评: 本题考查了数形结合的思想方法,函数周期性及对数函数图象的性质,解题时要准确推理,认真画图,属于中档题8若函数f(x)=lg(x2+axa1)在区间2,+)上单调递增,则实数a的取值范围是()A(3,+)B3,+)C(4,+)D4,+)考点: 复合函数的单调性专题: 函数的性质及应用分析: 由复合函数为增函数,且外函数为增函数,则只需内函数在区间2,+)上单调递增且其最小值大于0,由此列不等式组求解a的范围解答: 解:令t=x2+axa1,函数f(x)=lg(x2+axa1)在区间2,+)上单调递增,又外层函数y=lgt为定义域内的增函数,需要内层函数t=x2+axa1在区间2,+)上单调递增,且其最小值大于0,即,解得:a3实数a的取值范围是(3,+)故选:A点评: 本题考查了复合函数的单调性,关键是注意真数大于0,是中档题9曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为()Ae2B2e2Ce2De2考点: 利用导数研究曲线上某点切线方程专题: 计算题分析: 欲切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率最后求出切线的方程,从而问题解决解答: 解析:依题意得y=ex,因此曲线y=ex在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是ye2=e2(x2),当x=0时,y=e2即y=0时,x=1,切线与坐标轴所围成的三角形的面积为:S=e21=故选D点评: 本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题10设函数f(x),g(x)在a,b上均可导,且f(x)g(x),则当axb时,有()Af(x)g(x)Bf(x)+g(a)g(x)+f(a)Cf(x)g(x)Df(x)+g(b)g(x)+f(b)考点: 导数的运算专题: 函数的性质及应用分析: 构造函数,设F(x)=f(x)g(x),因为函数f(x),g(x)在a,b上均可导,且f(x)g(x),所以F(x)在a,b上可导,并且F(x)0,得到函数的单调性,利用单调性得到F(a)F(x)F(b),即f(x)g(x)f(a)g(a),得到选项解答: 解:设F(x)=f(x)g(x),因为函数f(x),g(x)在a,b上均可导,且f(x)g(x),所以F(x)在a,b上可导,并且F(x)0,所以F(x)在a,b上是减函数,所以F(a)F(x)F(b),即f(x)g(x)f(a)g(a),f(x)+g(a)g(x)+f(a);故选B点评: 本题考查了函数的单调性,关键构造函数,利用求导判断函数的单调性二、填空题:(本大题5小题,每小题5分,共25分)11函数f(x)=(m2m1)是幂函数,且在区间(0,+)上为减函数,则实数m的值为2考点: 幂函数的单调性、奇偶性及其应用;幂函数的概念、解析式、定义域、值域专题: 函数的性质及应用分析: 根据幂函数的定义,令幂的系数为1,列出方程求出m的值,将m的值代入f(x),判断出f(x)的单调性,选出符和题意的m的值解答: 解:f(x)=(m2m1)xm22m3是幂函数m2m1=1解得m=2或m=1当m=2时,f(x)=x3在x(0,+)上是减函数,满足题意当m=1时,f(x)=x0在x(0,+)上不是减函数,不满足题意故答案为:2点评: 解决幂函数有关的问题,常利用幂函数的定义:形如y=x(为常数)的为幂函数;幂函数的单调性与指数符号的关系是基础题12=考点: 对数的运算性质专题: 函数的性质及应用分析: 利用对数的运算性质把要求的式子化为 lg,进一步运算求得结果解答: 解:=lglg+lg=lglg2=lg2lg2=lg=lg=lg=lg10=,故答案为:点评: 本题主要考查对数的运算性质的应用,属于基础题13函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是a|a1或a2考点: 函数在某点取得极值的条件专题: 导数的综合应用分析: 由已知得f(x)=3x2+6ax+3(a+2),由题意知=36a236(a+2)0,由此能求出a的取值范围解答: 解:f(x)=x3+3ax2+3(a+2)x+1,f(x)=3x2+6ax+3(a+2),由题意知=36a236(a+2)0,解得a1或a2故答案为:a|a1或a2点评: 本题考查函数的极大值和极小值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用14已知函数f(x)=若f(x)在(,+)上单调递增,则实数a的取值范围为2a3考点: 函数单调性的性质专题: 常规题型分析: 让两段均为增函数且两段的端点值须满足前一段的最大值小于或等于后一段的最小值即可解答: 解:f(x)在(,+)上单调递增须2a3, 故答案为:2a3点评: 分段函数在定义域内递增,须每一段递增,且前一段的最大值小于或等于后一段的最小值15定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且在1,0上是增函数,下面是关于函数f(x)的判断:f(x)的图象关于点P(,0)对称; f(x)的图象关于直线x=1对称;f(x)在0,1上是增函数; f(2)=f(0)其中正确的判断有、(把你认为正确的判断都填上)考点: 奇偶函数图象的对称性专题: 规律型;函数的性质及应用分析: 由f(x)=f(x),f(x+1)=f(x)可得f(1+x)=f(x),则可求f(x)图象关于点对称;f(x)图象关于y轴(x=0)对称,可得x=1也是图象的一条对称轴,故可判断;由f(x)为偶函数且在1,0上单增可得f(x)在0,1上是减函数;由f(x+1)=f(x)可得f(2+x)=f(x+1)=f(x),故f(2)=f(0)解答: 解:由f(x)为偶函数可得f(x)=f(x),由f(x+1)=f(x)可得f(1+x)=f(x),则f(x)图象关于点对称,即正确;f(x)图象关于y轴(x=0)对称,故x=1也是图象的一条对称轴,故正确;由f(x)为偶函数且在1,0上单增可得f(x)在0,1上是减函数,即错;由f(x+1)=f(x)可得f(2+x)=f(x+1)=f(x),f(2)=f(0),即正确故答案为:点评: 本题考查函数的对称性,函数的单调性,函数奇偶性的应用,考查学生分析问题解决问题的能力,是基础题三、解答题:(本大题共6题,满分75分解答须写出文字说明、证明过程和演算步骤)16已知函数f(x)=的定义域为集合A,B=x|xa(1)若AB,求实数a的取值范围;(2)若全集U=x|x4,a=1,求UA及A(UB)考点: 函数的定义域及其求法;交、并、补集的混合运算专题: 计算题分析: (1)首先求出集合A,根据AB,利用子集的概念,考虑集合端点值列式求得a的范围;(2)直接运用补集及交集的概念进行求解解答: 解:(1)要使函数f(x)=有意义,则,解得:2x3所以,A=x|2x3又因为B=x|xa,要使AB,则a3(2)因为U=x|x4,A=x|2x3,所以CUA=x|x2或3x4又因为a=1,所以B=x|x1所以CUB=1x4,所以,A(CUB)=A=x|2x31x4=x|1x3点评: 本题考查了函数的定义域及其求法,考查了交集和补集的混合运算,求解集合的运算时,利用数轴分析能起到事半功倍的效果,此题是基础题17已知aR,设命题p:函数f(x)=ax是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R若“pq”是真命题,“pq”是假命题,求实数a的取值范围考点: 复合命题的真假专题: 函数的性质及应用;简易逻辑分析: 本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断命题p为真命题时,指数函数f(x)=ax的底数0a1,命题q为真命题时,对数函数g(x)=lg(2ax2+2ax+1)的真数2ax2+2ax+10在R上恒成立,求得0a2pq是真命题,pq是假命题,所以p,q一真一假,分类讨论即可解答: 解:当命题p为真命题时,因为函数f(x)=ax是R上的单调递减函数,所以0a1(2分)当命题q为真命题时,因为函数g(x)=lg(2ax2+2ax+1)的定义域为R所以2ax2+2ax+10在R上恒成立当a=0时,10在R上恒成立(4分)当所以,当命题q为真命题时,0a2(8分)因为pq是真命题,pq是假命题,所以p,q一真一假当(9分)当(11分)综上所述a的取值范围是1a2或a=0(12分)点评: 解题关键是由pq是真命题,pq是假命题,得p,q一真一假18已知函数(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x3,+)上为增函数,求a的取值范围考点: 函数奇偶性的判断;函数单调性的性质专题: 计算题分析: (1)先判断函数的定义域关于原点对称,再利用奇偶函数的定义,注意对参数进行讨论;(2)函数f(x)在x3,+)上为增函数,可转化为导函数大于等于0在x3,+)上恒成立,从而可解解答: 解:(1)函数的定义域关于原点对称,当a=0时,函数为偶函数;当a0时,函数非奇非偶(2)函数f(x)在x3,+)上为增函数 在x3,+)上恒成立点评: 本题以函数为载体,考查函数的性质,考查恒成立问题,关键是掌握定义,利用导数解决恒成立问题19已知函数是定义在(1,1)上的奇函数,且(1)求函数f(x)的解析式;(2)判断f(x)的单调性,并证明你的结论;(3)解不等式f(t1)+f(t)0考点: 奇偶性与单调性的综合专题: 函数的性质及应用分析: (1)由f(0)=0,解得b的值,再根据f()=,解得a的值,从而求得f(x)的解析式 (2)设1x1x21,求得f(x1)f(x2)=0,即f(x1)f(x2)0,可得函数f(x)在(1,1)上是减函数(3)由不等式f(t1)+f(t)0,可得f(t1)f(t),可得,由此求得t的范围解答: 解:(1)由奇函数的性质可得f(0)=0,解得b=0,f(x)=再根据f()=,解得a=1,f(x)= (2)设1x1x21,f(x1)f(x2)=,而由题设可得 x2x10,1x1x20,0,故 f(x1)f(x2)0,故函数f(x)在(1,1)上是减函数(3)由不等式f(t1)+f(t)0,可得f(t1)f(t)=f(t),解得t1,故t的范围为(,1)点评: 本题主要考查函数的单调性和奇偶性的综合应用,属于中档题20有两个投资项目A,B,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元)(1)分别将A,B两个投资项目的利润表示为投资B=x|xa(万元)的函数关系式;(2)现将x(0x10)万元投资A项目,10x万元投资B项目h(x)表示投资A项目所得利润与投资B项目所得利润之和求h(x)的最大值,并指出x为何值时,h(x)取得最大值考点: 函数模型的选择与应用;函数解析式的求解及常用方法专题: 计算题;应用题;函数的性质及应用分析: (1)由题意,设,代入求出参数值即可,(2)化简,利用换元法可得y=从而求最值解答: 解:(1)设投资为x万元,A项目的利润为f(x)万元,B项目的利润为g(x)万元由题设由图知又,从而(2)令=当,答:当A项目投入3.75万元,B项目投入6.25万元时,最大利润为万元点评: 本题考查了学生将实际问题转化为数学问题的能力及换元法与配方法求函数的最值,属于中档题21已知函数f(x)=x2+axlnx,aR(1)若函数f(x)在1,2上是减函数,求实数a的取值范围;(2)令g(x)=f(x)x2,是否存在实数a,当x(0,e(e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由考点: 函数单调性的性质专题: 分类讨论;转化思想分析: (1)由函数f(x)在1,2上是减函数得在1,2上恒成立,即有h(x)=2x2+ax10成立求解(2)先假设存在实数a,求导得=,a在系数位置对它进行讨论,结合x(0,e分当a0时,当时,当时三种情况进行解答: 解:(1)在1,2上恒成立,令h(x)=2x2+ax1,有得,得(6分)(2)假设存在实数a,使g(x)=axlnx(x(0,e)有最小值3,=(7分)当a0时,g(x)在(0,e上单调递减,g(x)min=g(e)=ae1=3,(舍去),g(x)无最小值当时,g(x)在上单调递减,在上单调递增,a=e2,满足条件(11分)当时,g(x)在(0,e上单调递减,g(x)min=g(e)=ae1=3,(舍去),f(x)无最小值(13分)综上,存在实数a=e2,使得当x(0,e时g(x)有最小值3(14分)点评: 本题主要考查转化化归、分类讨论等思想的应用,函数若为单调函数,则转化为不等式恒成立问题,解决时往往又转化求函数最值问题四、附加题22已知函数f(x)=x3x()判断的单调性;()求函数y=f(x)的零点的个数;()令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围考点: 利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值专题: 导数的综合应用分析: ()化简,并求导数,注意定义域:(0,+),求出单调区间;()运用零点存在定理说明在(1,2)内有零点,再说明f(x)在(0,+)上有且只有两个零点;()对g(x)化简,并求出导数,整理合并,再设出h(x)=x2(2+a)x+1,说明h(x)=0的两个根,有一个在(0,)内,另一个大于e,由于h(0)=1,通过h()0解出a即可解答: 解:()设(x)=x21(x0),则(x)=2x+0,(x)在(0,+)上单调递增;()(1)=10,(2)=30,且(x)在(0,+)上单调递增,(x)在(1,2)内有零点,又f(x)=x3x=x(x),显然x=0为f(x)的一个零点,f(x)在(0,+)上有且只有两个零点;()g(x)=+lnx=lnx+,则g(x)=,设h(x)=x2(2+a)x+1,则h(x)=0有两个不同的根x1,x2,且有一根在(0,)内,不妨设0x1,由于x1x2=1,即x2e,由于h(0)=1,故只需h()0即可,即(2+a)+10,解得ae+2,实数a的取值范围是(e+2,+)点评: 本题主要考查导数在函数中的综合运用:求单调区间,求极值,同时考查零点存在定理和二次方程实根的分布,是一道综合题
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!