2019-2020年高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算教学案新人教A版选修1.doc

上传人:tia****nde 文档编号:2620734 上传时间:2019-11-28 格式:DOC 页数:15 大小:328.50KB
返回 下载 相关 举报
2019-2020年高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算教学案新人教A版选修1.doc_第1页
第1页 / 共15页
2019-2020年高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算教学案新人教A版选修1.doc_第2页
第2页 / 共15页
2019-2020年高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算教学案新人教A版选修1.doc_第3页
第3页 / 共15页
点击查看更多>>
资源描述
2019-2020年高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算教学案新人教A版选修1预习课本P5860,思考并完成下列问题(1)复数乘法、除法的运算法则是什么?共轭复数概念的定义是什么?(2)复数乘法的多项式运算与实数的多项式运算法则是否相同?如何应用共轭复数的性质解决问题?1复数代数形式的乘法法则设z1abi,z2cdi(a,b,c,dR),则z1z2(abi)(cdi)(acbd)(adbc)i.2复数乘法的运算律对任意复数z1,z2,z3C,有交换律z1z2z2z1结合律(z1z2)z3z1(z2z3)分配律z1(z2z3)z1z2z1z33.共轭复数已知z1abi,z2cdi,a,b,c,dR,则(1)z1,z2互为共轭复数的充要条件是ac且bd.(2)z1,z2互为共轭虚数的充要条件是ac且bd0.4复数代数形式的除法法则:(abi)(cdi)i(cdi0)点睛在进行复数除法时,分子、分母同乘以分母的共轭复数cdi,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似1判断(正确的打“”,错误的打“”)(1)两个复数互为共轭复数是它们的模相等的必要条件()(2)若z1,z2C,且zz0,则z1z20.()(3)两个共轭虚数的差为纯虚数()答案:(1)(2)(3)2(北京高考)复数i(2i)()A12iB12iC12i D12i答案:A3若复数z11i,z23i,则z1z2()A42i B2iC22i D34i答案:A4复数_.答案:i复数代数形式的乘法运算典例(1)已知i是虚数单位,若复数(1ai)(2i)是纯虚数,则实数a等于()A2B.C D2(2)(江苏高考)复数z(12i)(3i),其中i为虚数单位,则z的实部是_解析(1)(1ai)(2i)2a(12a)i,要使复数为纯虚数,所以有2a0,12a0,解得a2.(2)(12i)(3i)3i6i2i255i,所以z的实部是5.答案(1)A(2)51两个复数代数形式乘法的一般方法(1)首先按多项式的乘法展开(2)再将i2换成1.(3)然后再进行复数的加、减运算,化简为复数的代数形式2常用公式(1)(abi)2a2b22abi(a,bR)(2)(abi)(abi)a2b2(a,bR)(3)(1i)22i. 活学活用1已知x,yR,i为虚数单位,且xiy1i,则(1i)xy的值为()A2 B2iC4 D2i解析:选D由xiy1i得x1,y1,所以(1i)xy(1i)22i.2已知a,bR,i是虚数单位若(ai)(1i)bi,则abi_.解析:因为(ai)(1i)a1(a1)ibi,所以a10,a1b,即a1,b2,所以abi12i.答案:12i复数代数形式的除法运算典例(1)若复数z满足z(2i)117i(i是虚数单位),则z为()A35i B35iC35i D35i(2)设i是虚数单位,复数为纯虚数,则实数a为()A2 B2C D.解析(1)z(2i)117i,z35i.(2)i,由是纯虚数,则0,0,所以a2.答案(1)A(2)A1两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式2常用公式(1)i;(2)i;(3)i.活学活用1(天津高考)i是虚数单位,计算的结果为_解析:i.答案:i2计算:_.解析:法一:2i.法二:2i.答案:2ii的乘方的周期性及应用典例(1)(湖北高考)i为虚数单位,i607的共轭复数为()Ai BiC1 D1(2)计算i1i2i3i2 016_.解析(1)因为i607i41513i3i,所以其共轭复数为i,故选A.(2)法一:原式0.法二:i1i2i3i40,inin1in2in30(nN),i1i2i3i2 016,(i1i2i3i4)(i5i6i7i8)(i2 013i2 014i2 015i2 016)0.答案(1)A(2)0虚数单位i的周期性(1)i4n1i,i4n21,i4n3i,i4n1(nN*)(2)inin1in2in30(nN)活学活用计算2310_.解析:i,原式ii2i3i10i12310i55i3i.答案:i复数综合应用典例设z是虚数,z是实数,且12,求|z|的值及z的实部的取值范围解因为z是虚数,所以可设zxyi,x,yR,且y0.所以zxyixyixi.因为是实数且y0,所以y0,所以x2y21,即|z|1.此时2x.因为12,所以12x2,从而有x1,即z的实部的取值范围是.一题多变1变设问若本例中条件不变,设u,证明u为纯虚数证明:设zxyi,x,yR,且y0,由典例解析知,x2y21,ui.因为x,y0,所以0,所以u为纯虚数2变设问若本例条件不变,求2的最小值解:设zxyi,x,yR,且y0,由典例解析知x2y21.则22x22x22x2x2x12(x1)3.因为x1,所以1x0.于是22(x1)3231.当且仅当2(x1),即x0时等号成立所以2的最小值为1,此时zi.复数运算的综合问题解决方法在有关复数运算的综合问题中,常与集合、数列、不等式、三角函数、函数、解析几何等内容结合在一起,要解决此类问题常将复数设为xyi(x,yR)的形式,利用有关条件及复数相等转化为实数问题或利用复数的几何意义转化为点的坐标及向量问题进行解决 层级一学业水平达标1复数(1i)2(23i)的值为()A64iB64iC64i D64i解析:选D(1i)2(23i)2i(23i)64i.2(全国卷)已知复数z满足(z1)i1i,则z()A2i B2iC2i D2i解析:选Cz11i,所以z2i,故选C.3(广东高考)若复数zi(32i)(i是虚数单位),则()A23i B23iC32i D32i解析:选Azi(32i)3i2i223i,23i.4(1i)20(1i)20的值是()A1 024 B1 024C0 D512解析:选C(1i)20(1i)20(1i)210(1i)210(2i)10(2i)10(2i)10(2i)100.5(全国卷)若a为实数,且3i,则a()A4 B3C3 D4解析:选Di3i,所以解得a4,故选D.6(天津高考)已知a,bR,i是虚数单位,若(1i)(1bi)a,则的值为_解析:因为(1i)(1bi)1b(1b)ia,又a,bR,所以1ba且1b0,得a2,b1,所以2.答案:27设复数z1i,则z22z_.解析:z1i,z22zz(z2)(1i)(1i2)(1i)(1i)3.答案:38若1bi,其中a,b都是实数,i是虚数单位,则|abi|_.解析:a,bR,且1bi,则a(1bi)(1i)(1b)(1b)i,|abi|2i|.答案:9计算:.解:因为i1,i,所以i1(i)1.10已知为z的共轭复数,若z3i13i,求z.解:设zabi(a,bR),则abi(a,bR),由题意得(abi)(abi)3i(abi)13i,即a2b23b3ai13i,则有解得或所以z1或z13i.层级二应试能力达标1如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()AABBCC DD解析:选B设zabi(a,bR),且a0,b0,则z的共轭复数为abi,其中a0,b0,故应为B点2设a是实数,且R,则实数a()A1 B1C2 D2解析:选B因为R,所以不妨设x,xR,则1ai(1i)xxxi,所以有所以a1.3若a为正实数,i为虚数单位,2,则a()A2 B.C. D1解析:选B(ai)(i)1ai,|1ai|2,解得a或a(舍)4计算的值是()A0 B1Ci D2i解析:选D原式iii2i.5若z1a2i,z234i,且为纯虚数,则实数a的值为_解析:,为纯虚数,a.答案:6设复数z满足z234i(i是虚数单位),则z的模为_解析:设zabi(a,bR),则z2a2b22abi34i,解得或|z|.答案:7设复数z,若z20,求纯虚数a.解:由z20可知z2是实数且为负数z1i.a为纯虚数,设ami(mR且m0),则z2(1i)22ii0,m4,a4i.8复数z且|z|4,z对应的点在第一象限,若复数0,z,对应的点是正三角形的三个顶点,求实数a,b的值解:z(abi)2ii(abi)2a2bi.由|z|4,得a2b24,复数0,z,对应的点构成正三角形,|z|z|.把z2a2bi代入化简得|b|1.又z对应的点在第一象限,a0,b0.由得故所求值为a,b1.(时间: 120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1i是虚数单位,复数()A2i B2iC2i D2i解析:选B2i.2(全国卷)若a为实数,且(2ai)(a2i)4i,则a()A1 B0C1 D2解析:选B(2ai)(a2i)4i,4a(a24)i4i.解得a0.故选B.3若复数z满足i,其中i是虚数单位,则z()A1i B1iC1i D1i解析:选A(1i)ii2i1i,z1i,故选A.4设i是虚数单位,则复数在复平面内所对应的点位于()A第一象限B第二象限C第三象限 D第四象限解析:选B1i,由复数的几何意义知1i在复平面内的对应点为(1,1),该点位于第二象限,故选B.5已知1i(i为虚数单位),则复数z()A1iB1iC1i D1i解析:选D由1i,得z1i,故选D.6设复数z1i(i为虚数单位),z的共轭复数是,则等于()A12i B2iC12i D12i解析:选C由题意可得12i,故选C.7已知复数zi,则|z|()Ai BiC.i D.i解析:选D因为zi,所以|z|i i.8已知复数z满足(1i)zi2 016(其中i为虚数单位),则的虚部为()A. BC.i Di解析:选B2 0164504,i2 016i41.zi,i,的虚部为.故选B.9A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1z2|z1z2|,则三角形AOB一定是()A等腰三角形 B直角三角形C等边三角形 D等腰直角三角形解析:选B根据复数加(减)法的几何意义,知以,为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB为直角三角形10设z(2t25t3)(t22t2)i,tR,则以下结论正确的是()Az对应的点在第一象限Bz一定不为纯虚数C.对应的点在实轴的下方Dz一定为实数解析:选Ct22t2(t1)210,z对应的点在实轴的上方又z与对应的点关于实轴对称C项正确11设z的共轭复数为,若z4,z8,则等于()A1 BiC1 Di解析:选D设zabi(a,bR),则abi,由条件可得解得因此或所以i,或i,所以i.12已知复数z(x2)yi(x,yR)在复平面内对应的向量的模为,则的最大值是()A. B.C. D.解析:选D因为|(x-2)+yi|=,所以(x-2)2+y2=3,所以点(x,y)在以C(2,0)为圆心,以为半径的圆上,如图,由平面几何知识-.二、填空题(本大题共4小题,每小题5分,满分20分把答案填在题中的横线上)13已知复数z(52i)2(i为虚数单位),则z的实部为_解析:复数z(52i)22120i,其实部是21.答案:2114i是虚数单位,若复数(12i)(ai)是纯虚数,则实数a的值为_解析:由(12i)(ai)(a2)(12a)i是纯虚数可得a20,12a0,解得a2.答案:215设复数abi(a,bR)的模为,则(abi)(abi)_.解析:|abi|,(abi)(abi)a2b23.答案:316若关于x的方程x2(2i)x(2m4)i0有实数根,则纯虚数m_.解析:设mbi(bR且b0),则x2(2i)x(2bi4)i0,化简得(x22x2b)(x4)i0,即解得m4i.答案:4i三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)设复数zlg(m22m2)(m23m2)i(mR),试求m取何值时?(1)z是实数. (2)z是纯虚数(3)z对应的点位于复平面的第一象限解:(1)由m23m20且m22m20,解得m1或m2,复数表示实数(2)当实部等于零且虚部不等于零时,复数表示纯虚数由lg(m22m2)0,且m23m20,求得m3,故当m3时,复数z为纯虚数(3)由lg(m22m2)0,且m23m20,解得m2或m3,故当m2或m3时,复数z对应的点位于复平面的第一象限18(本小题满分12分)已知(12i)43i,求z及.解:设zabi(a,bR),则abi.(12i)(abi)43i,(a2b)(2ab)i43i.由复数相等,解得解得z2i.i.19(本小题满分12分)已知z1i,a,b为实数(1)若z234,求|;(2)若1i,求a,b的值解:(1)(1i)23(1i)41i,所以|.(2)由条件,得1i,所以(ab)(a2)i1i,所以解得20(本小题满分12分)虚数z满足|z|1,z22z0,求z.解:设zxyi(x,yR,y0),x2y21.则z22z(xyi)22(xyi)(x2y23x)y(2x1)i.y0,z22z0,又x2y21.由得zi.21(本小题满分12分)已知复数z满足|z|,z2的虚部是2.(1)求复数z;(2)设z,z2,zz2在复平面上的对应点分别为A,B,C,求ABC的面积解:(1)设zabi(a,bR),则z2a2b22abi,由题意得a2b22且2ab2,解得ab1或ab1,所以z1i或z1i.(2)当z1i时,z22i,zz21i,所以A(1,1),B(0,2),C(1,1),所以SABC1.当z1i时,z22i,zz213i,所以A(1,1),B(0,2),C(1,3),所以SABC1.22(本小题满分12分)已知复数z1满足(z12)(1i)1i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.解:(z12)(1i)1i,z12i,z12i.设z2a2i(aR),则z1z2(2i)(a2i)(2a2)(4a)i.又z1z2R,a4.z242i.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!