资源描述
2019-2020年高中数学 第六课时 2.4平面向量的坐标(一)教案 北师大版必修4一、教学目标:1.知识与技能:(1)掌握平面向量正交分解及其坐标表示.(2)会用坐标表示平面向量的加、减及数乘运算.(3)理解用坐标表示的平面向量共线的条件.2.过程与方法:教材利用正交分解引出向量的坐标,在此基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,培养学生应用能力.3.情感态度价值观:通过本节内容的学习,使同学们对认识到在全体有序实数对与坐标平面内的所有向量之间可以建立一一对应关系(即点或向量都可以看作有序实数对的直观形象);让学生领悟到数形结合的思想;培养学生勇于创新的精神.二.教学重、难点 重点: 平面向量线性运算的坐标表示及向量平行的坐标表示.难点: 平面向量线性运算的坐标表示及向量平行的坐标表示.三.学法与教法: (1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学过程【创设情境】(回忆)平面向量的基本定理(基底) =1+2 其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.【探究新知】(一)、平面向量的坐标表示1在坐标系下,平面上任何一点都可用一对实数(坐标)来表示思考:在坐标系下,向量是否可以用坐标来表示呢?取轴、轴上两个单位向量, 作基底,则平面内作一向量记作:=(x, y) 称作向量的坐标如:=(2, 2) =(2, -1) =(1, -5)=(1, 0) =(0, 1) =(0, 0)2、由以上例子让学生讨论:向量的坐标与什么点的坐标有关?每一平面向量的坐标表示是否唯一的?两个向量相等的条件是?(两个向量坐标相等)(二)、平面向量的坐标运算OBCAxybc展示投影思考与交流:直接由学生讨论回答:思考1(1)已知(x1, y1) (x2, y2) 求+,-的坐标(2)已知(x, y)和实数, 求的坐标解:+=(x1+y1)+(x2+y2)=(x1+ x2)+ (y1+y2)即:+=(x1+ x2,y1+y2)同理:-=(x1-x2, y1-y2)=(x+y)=x+y=(x, y)结论:.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。思考2.已知你觉得的坐标与A、B点的坐标有什么关系?OxyB(x2, y2)A(x1, y1)=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)结论:.一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。展示投影例题讲评(学生先做,学生讲,教师提示或适当补充)例1.(教材P104例2)例2. (教材P104例3)例3.已知三个力 (3, 4), (2, -5), (x, y)的合力+=求的坐标.解:由题设+= 得:(3, 4)+ (2, -5)+(x, y)=(0, 0)OxyBACD1D2D3即: (-5,1)例4.已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。解:当平行四边形为ABCD时,仿例2得:D1=(2, 2)当平行四边形为ACDB时,仿例2得:D2=(4, 6);当平行四边形为DACB时,仿例2得:D3=(-6, 0)【巩固深化,发展思维】1若M(3, -2) N(-5, -1) 且 , 求P点的坐标;解:设P(x, y) 则(x-3, y+2)=(-8, 1)=(-4, ) P点坐标为(-1, -)2若A(0, 1), B(1, 2), C(3, 4) 则-2=(-3,-3)3已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD是梯形。解:=(-2, 3) =(-4, 6) =2 且 | 四边形ABCD是梯形 【学习小结】 (学生总结,其它学生补充)向量加法运算的坐标表示.向量减法运算的坐标表示.实数与向量的积的坐标表示.五、评价设计作业:习题2-4 A组第1,2,3,7,8题 六、教后反思:
展开阅读全文