资源描述
2019-2020年高中数学 2.1数列学案(苏教版必修5)【考点阐述】数列【考试要求】(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项【考题分类】(一)选择题(共2题)1.已知数列对任意的满足,且,那么等于( )A B C D【标准答案】: C【试题分析】: 由已知+ -12,+24,=+= -30【高考考点】: 数列【易错提醒】: 特殊性的运用【备考提示】: 加强从一般性中发现特殊性的训练。2.在数列中, ,则 A B C D解析:. ,(二)填空题(共2题)1.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,当时,表示非负实数的整数部分,例如,按此方案,第6棵树种植点的坐标应为 ;第xx棵树种植点的坐标应为 【标准答案】: (1,2) (3, 402)【试题分析】: T组成的数列为1,0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1(k=1,2,3,4)。一一带入计算得:数列为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5;数列为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4.因此,第6棵树种在 (1,2),第xx棵树种在(3, 402)。【高考考点】: 数列的通项【易错提醒】: 前几项的规律找错【备考提示】: 创新题大家都没有遇到过,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到解题方法。2.设数列中,则通项 _。【解】: , 将以上各式相加得: 故应填;(三)解答题(共1题)1.已知an是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上.()求数列an的通项公式;()若列数bn满足b1=1,bn+1=bn+,求证:bnbn+2b2n+1.本小题考查等差数列、等比数列等基本知识,考查转化与化归思想,推理与运算能力.解法一:()由已知得an+1=an+1、即an+1-an=1,又a1=1,所以数列an是以1为首项,公差为1的等差数列.故an=1+(a-1)1=n.()由()知:an=n从而bn+1-bn=2n.bn=(bn-bn-1)+(bn-1-bn-2)+(b2-b1)+b1=2n-1+2n-2+2+1=2n-1.因为bnbn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-52n+42n=-2n0,所以bnbn+2b,解法二:()同解法一.()因为b2=1,bnbn+2- b=(bn+1-2n)(bn+1+2n+1)- b =2n+1bn-1-2nbn+1-2n2n+12n(bn+1-2n+1)=2n(bn+2n-2n+1)=2n(bn-2n)=2n(b1-2)=-2n0,所以bn-bn+2b2n+1
展开阅读全文