2019-2020年高中数学 第2章 平面间的夹角同步练习 北师大版选修2-1.doc

上传人:tian****1990 文档编号:1977968 上传时间:2019-11-12 格式:DOC 页数:4 大小:655KB
返回 下载 相关 举报
2019-2020年高中数学 第2章 平面间的夹角同步练习 北师大版选修2-1.doc_第1页
第1页 / 共4页
2019-2020年高中数学 第2章 平面间的夹角同步练习 北师大版选修2-1.doc_第2页
第2页 / 共4页
2019-2020年高中数学 第2章 平面间的夹角同步练习 北师大版选修2-1.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019-2020年高中数学 第2章 平面间的夹角同步练习 北师大版选修2-1【选择题】1、矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为( )ABCD2、如图,以等腰直角三角形斜边BC上的高AD为折痕,把ABD和ACD折成互相垂直的两个平面后,某学生得出下列四个结论:;三棱锥DABC是正三棱锥;平面ADC的法向量和平面ABC的法向量互相垂直其中正确的是( )ABCD3、若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为,则下列各等式中成立的是 ( )A0B C D【填空题】4、两个平面的夹角的范围是_5、设是直线,是平面,向量在上,向量在上,则所成二面角中较小的一个的大小为 6、DABC中ACB=90,PA平面ABC,PA=2,AC=2,则平面PBC与平面PAC,平面ABC所成的二角的大小分别是_、_【解答题】7、如图,在三棱柱ABCA1B1C1中,AB侧面BB1C1C,E为棱CC1上异于C、C1的一点,EAEB1,已知AB=,BB1=2,BC=1,BCC1=,求:二面角AEB1A1的平面角的正切值. 8、如图,在四棱锥PABCD中,底面ABCD为矩形,PD底面ABCD,E是AB上一点,PEEC. 已知求二面角EPCD的大小.9、如图,已知长方体直线与平面所成的角为,垂直于,为的中点. 求平面与平面所成的二面角; 参考答案1、 C 2、 B 3、 D 4、0,90 5、6、90 ,30 7、以B为原点,、分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB=,BCC1=,在三棱柱ABCA1B1C1中有B(0,0,0),A(0,0,),B1(0,2,0),E由已知有故二面角AEB1A1的平面角的大小为向量的夹角. 8、以D为原点,、分别为x、y、z轴建立空间直角坐标系. 由已知可得D(0,0,0),P(0,0,C(0,2,0)作DGPC,可设G(0,y,z).由得即作EFPC于F,设F(0,m,n),则由,又由F在PC上得因故平面EPCD的平面角的大小为向量的夹角.故 即二面角EPCD的大小为9、解:在长方体中,以所在的直线为轴,以所在的直线为轴,所在的直线为轴建立如图示空间直角坐标系由已知可得,又平面,从而与平面所成的角为,又,从而易得易知平面的一个法向量设是平面的一个法向量,由即所以即平面与平面所成的二面角的大小(锐角)为.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!