湖北省宜昌市中考数学试卷解析

上传人:青山 文档编号:1474773 上传时间:2019-10-20 格式:DOC 页数:26 大小:632KB
返回 下载 相关 举报
湖北省宜昌市中考数学试卷解析_第1页
第1页 / 共26页
湖北省宜昌市中考数学试卷解析_第2页
第2页 / 共26页
湖北省宜昌市中考数学试卷解析_第3页
第3页 / 共26页
点击查看更多>>
资源描述
湖北省宜昌市中考数学试卷一、选择题(下列各题中,只有一个选项是符合题目要求的,本大题共15小题,每小题3分,计45分)1中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为() A 44108 B 4.4109 C 4.4108 D 4.410102下列剪纸图案中,既是轴对称图形,又是中心对称图形的是() A B C D 3陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为() A +415m B 415m C 415m D 8848m4某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5这组数据的众数是() A 3 B 3.5 C 4 D 55如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是() A B C D 6下列式子没有意义的是() A B C D 7不等式组的解集在数轴上表示正确的是() A B C D 8下列图形具有稳定性的是() A 正方形 B 矩形 C 平行四边形 D 直角三角形9下列图形中可以作为一个三棱柱的展开图的是() A B C D 10下列运算正确的是() A x4+x4=2x8 B (x2)3=x5 C (xy)2=x2y2 D x3x=x411如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是() A 圆形铁片的半径是4cm B 四边形AOBC为正方形 C 弧AB的长度为4cm D 扇形OAB的面积是4cm212如图,ABCD,FEDB,垂足为E,1=50,则2的度数是() A 60 B 50 C 40 D 3013两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:ACBD;AO=CO=AC;ABDCBD,其中正确的结论有() A 0个 B 1个 C 2个 D 3个14如图,在方格纸中,以AB为一边作ABP,使之与ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有() A 1个 B 2个 C 3个 D 4个15如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是() A B C D 二、解答题(本大题共9小题,计75分)16计算:|2|+30(6)()17化简:+18如图,一块余料ABCD,ADBC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在ABC内部相交于点O,画射线BO,交AD于点E(1)求证:AB=AE;(2)若A=100,求EBC的度数19901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率20如图,在RtABC中,ACB=90,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DOAB,垂足为O,点B在边AB上,且与点B关于直线DO对称,连接DB,AD(1)求证:DOBACB;(2)若AD平分CAB,求线段BD的长;(3)当ABD为等腰三角形时,求线段BD的长21如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由22全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同求2014年社区购买药品的总费用;据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数23如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作O,交DC于D,G两点,AD分别于EF,GF交于I,H两点(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,求证:FD=FI;设AC=2m,BD=2n,求O的面积与菱形ABCD的面积之比24如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线y=ax2+bx+n(a0)过E,A两点(1)填空:AOB=,用m表示点A的坐标:A(,);(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且=时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围2015年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(下列各题中,只有一个选项是符合题目要求的,本大题共15小题,每小题3分,计45分)1中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为() A 44108 B 4.4109 C 4.4108 D 4.41010考点: 科学记数法表示较大的数分析: 科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解答: 解:4 400 000 000=4.4109,故选:B点评: 此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2下列剪纸图案中,既是轴对称图形,又是中心对称图形的是() A B C D 考点: 中心对称图形;轴对称图形分析: 根据轴对称图形与中心对称图形的概念求解解答: 解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误故选:A点评: 此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合3陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为() A +415m B 415m C 415m D 8848m考点: 正数和负数分析: 根据用正负数表示两种具有相反意义的量的方法,可得:高出海平面8848m,记为+8848m;则低于海平面约415m,记为415m,据此解答即可解答: 解:高出海平面8848m,记为+8848m;低于海平面约415m,记为415m故选:B点评: 此题主要考查了用正负数表示两种具有相反意义的量,要熟练掌握,解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量4某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5这组数据的众数是() A 3 B 3.5 C 4 D 5考点: 众数分析: 一组数据中出现次数最多的数据叫做众数,依此求解即可解答: 解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5故选B点评: 本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据5如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是() A B C D 考点: 几何概率分析: 求出阴影在整个转盘中所占的比例即可解答解答: 解:每个扇形大小相同,因此阴影面积与空白的面积相等,落在阴影部分的概率为:=故选:C点评: 此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比6下列式子没有意义的是() A B C D 考点: 二次根式有意义的条件分析: 根据二次根式的被开方数是非负数,可得答案解答: 解:A、没有意义,故A符合题意;B、有意义,故B不符合题意;C、有意义,故C不符合题意;D、有意义,故D不符合题意;故选:A点评: 本题考查了二次根式有意义的条件,二次根式的被开方数是非负数是解题关键7不等式组的解集在数轴上表示正确的是() A B C D 考点: 在数轴上表示不等式的解集;解一元一次不等式组分析: 根据不等式的基本性质来解不等式组,两个不等式的解集的交集,就是该不等式组的解集;然后把不等式的解集根据不等式解集在数轴上的表示方法画出图示解答: 解:不等式组的解集是1x3,其数轴上表示为:故选B点评: 不等式组的解集:不等式组的解集可以先求这些个不等式各自的解,然后再找它们的相交的公共部分(最好先在数轴上画出它们的解),找它们的相交的公共部分可以用这个口诀记住:同小取小,同大取大;比大的小,比小的大,取中间;比大的大,比小的小,无解8下列图形具有稳定性的是() A 正方形 B 矩形 C 平行四边形 D 直角三角形考点: 三角形的稳定性;多边形分析: 根据三角形具有稳定性,四边形具有不稳定性进行判断解答: 解:直角三角形具有稳定性故选:D点评: 此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键9下列图形中可以作为一个三棱柱的展开图的是() A B C D 考点: 几何体的展开图分析: 三棱柱展开后,侧面是三个长方形,上下底各是一个三角形解答: 解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图故选:A点评: 此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧10下列运算正确的是() A x4+x4=2x8 B (x2)3=x5 C (xy)2=x2y2 D x3x=x4考点: 幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式分析: A:根据合并同类项的方法判断即可B:根据幂的乘方的运算方法判断即可C:根据完全平方公式的计算方法判断即可D:根据同底数幂的乘法法则判断即可解答: 解:x4+x4=2x4,选项A不正确;(x2)3=x6,选项B不正确;(xy)2=x22xy+y2,选项C不正确;x3x=x4,选项D正确故选:D点评: (1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:(am)n=amn(m,n是正整数);(ab)n=anbn(n是正整数)(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:底数必须相同;按照运算性质,只有相乘时才是底数不变,指数相加(3)此题还考查了完全平方公式,以及合并同类项的方法,要熟练掌握11如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是() A 圆形铁片的半径是4cm B 四边形AOBC为正方形 C 弧AB的长度为4cm D 扇形OAB的面积是4cm2考点: 切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算专题: 应用题分析: 由BC,AC分别是O的切线,B,A为切点,得到OACA,OBBC,又C=90,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断解答: 解:由题意得:BC,AC分别是O的切线,B,A为切点,OACA,OBBC,又C=90,OA=OB,四边形AOBC是正方形,OA=AC=4,故A,B正确;的长度为:=2,故C错误;S扇形OAB=4,故D正确故选C点评: 本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键12如图,ABCD,FEDB,垂足为E,1=50,则2的度数是() A 60 B 50 C 40 D 30考点: 平行线的性质分析: 先根据直角三角形的性质求出D的度数,再由平行线的性质即可得出结论解答: 解:FEDB,DEF=901=50,D=9050=40ABCD,2=D=40故选C点评: 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等13两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:ACBD;AO=CO=AC;ABDCBD,其中正确的结论有() A 0个 B 1个 C 2个 D 3个考点: 全等三角形的判定与性质专题: 新定义分析: 先证明ABD与CBD全等,再证明AOD与COD全等即可判断解答: 解:在ABD与CBD中,ABDCBD(SSS),故正确;ADB=CDB,在AOD与COD中,AODCOD(SAS),AOD=COD=90,AO=OC,ACDB,故正确;故选D点评: 此题考查全等三角形的判定和性质,关键是根据SSS证明ABD与CBD全等和利用SAS证明AOD与COD全等14如图,在方格纸中,以AB为一边作ABP,使之与ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有() A 1个 B 2个 C 3个 D 4个考点: 全等三角形的判定分析: 根据全等三角形的判定得出点P的位置即可解答: 解:要使ABP与ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C点评: 此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置15如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是() A B C D 考点: 反比例函数的应用;反比例函数的图象分析: 根据储存室的体积=底面积高即可列出反比例函数关系,从而判定正确的结论解答: 解:由储存室的体积公式知:104=Sd,故储存室的底面积S(m2)与其深度d(m)之间的函数关系式为S=(d0)为反比例函数故选:A点评: 本题考查了反比例函数的应用及反比例函数的图象,解题的关键是根据自变量的取值范围确定双曲线的具体位置,难度不大二、解答题(本大题共9小题,计75分)16计算:|2|+30(6)()考点: 实数的运算;零指数幂专题: 计算题分析: 原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用乘法法则计算即可得到结果解答: 解:原式=2+13=0点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键17化简:+考点: 分式的加减法分析: 首先约分,然后根据同分母分式加减法法则,求出算式+的值是多少即可解答: 解:+=1点评: 此题主要考查了分式的加减法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减法18如图,一块余料ABCD,ADBC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在ABC内部相交于点O,画射线BO,交AD于点E(1)求证:AB=AE;(2)若A=100,求EBC的度数考点: 作图基本作图;等腰三角形的判定与性质分析: (1)根据角平分线的性质,可得AEB=EBC,根据角平分线的性质,可得EBC=ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得AEB,根据平行线的性质,可得答案解答: (1)证明:ADBC,AEB=EBC由BE是ABC的角平分线,EBC=ABE,AEB=ABE,AB=AE;(2)由A=100,ABE=AEB,得ABE=AEB=40由ADBC,得EBC=AEB=40点评: 本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定19901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有60名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率考点: 列表法与树状图法;扇形统计图分析: (1)利用参加“读书社”的学生数除以所占比例进而求出总人数;(2)首先求出参加“吉他社”的学生在全班学生中所占比例,进而求出对应扇形的圆心角的度数;(3)首先画出树状图,进而求出恰好选中甲和乙的概率解答: 解:(1)参加“读书社”的学生有15人,且在扇形统计图中,所占比例为:25%,该班的学生共有:1525%=60(人);故答案为:60;(2)参加“吉他社”的学生在全班学生中所占比例为:=10%,所以,“吉他社”对应扇形的圆心角的度数为:36010%=36;(3)画树状图如下:,由树状图可知,共有6种可能的情况,其中恰好选中甲和乙的情况有2种,故P(选中甲和乙)=点评: 此题考查了扇形统计图以及树状图法求概率,弄清题意得出正确信息是解本题的关键20如图,在RtABC中,ACB=90,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DOAB,垂足为O,点B在边AB上,且与点B关于直线DO对称,连接DB,AD(1)求证:DOBACB;(2)若AD平分CAB,求线段BD的长;(3)当ABD为等腰三角形时,求线段BD的长考点: 相似形综合题分析: (1)由DOB=ACB=90,B=B,容易证明DOBACB;(2)先由勾股定理求出AB,由角平分线的性质得出DC=DO,再由HL证明RtACDRtAOD,得出AC=AO,设BD=x,则DC=DO=8x,由勾股定理得出方程,解方程即可;(3)根据题意得出当ABD为等腰三角形时,AB=DB,由DOBACB,得出=,设BD=5x,则AB=DB=5x,BO=BO=4x,由AB+BO+BO=AB,得出方程,解方程求出x,即可得出BD解答: (1)证明:DOAB,DOB=DOA=90,DOB=ACB=90,又B=B,DOBACB;(2)解:ACB=90,AB=10,AD平分CAB,DCAC,DOAB,DC=DO,在RtACD和RtAOD中,RtACDRtAOD(HL),AC=AO=6,设BD=x,则DC=DO=8x,OB=ABAO=4,在RtBOD中,根据勾股定理得:DO2+OB2=BD2,即(8x)2+42=x2,解得:x=5,BD的长为5;(3)解:点B与点B关于直线DO对称,B=OBD,BO=BO,BD=BD,B为锐角,OBD也为锐角,ABD为钝角,当ABD为等腰三角形时,AB=DB,DOBACB,=,设BD=5x,则AB=DB=5x,BO=BO=4x,AB+BO+BO=AB,5x+4x+4x=10,解得:x=,BD=点评: 本题是相似形综合题目,考查了相似三角形的判定与性质、勾股定理、全等三角形的判定与性质、角平分线的性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要根据题意列出方程,解方程才能得出结果21如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由考点: 反比例函数综合题分析: (1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;(2)由RtDEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式解答: 解:(1)设直线AB的解析式为y=kx+b,A(4,0),B(0,4),解得:,直线AB的解析式为:y=x+4;(2)在RtDEF中,EFD=30,ED=2,EF=2,DF=4,点D与点A重合,D(4,0),F(2,2),G(3,),反比例函数y=经过点G,k=3,反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:点F在直线AB上,设F(t,t+4),又ED=2,D(t+2,t+2),点G为边FD的中点G(t+1,t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(t+3)(t+1)=(t+4)t,解得:t=,m=,经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=点评: 本题是反比例函数综合题目,考查了用待定系数法求一次函数的解析式、求反比例函数的解析式、坐标与图形特征、解直角三角形、解方程组等知识;本题难度较大,综合性强,用待定系数法确定一次函数和反比例函数的解析式是解决问题的关键22全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同求2014年社区购买药品的总费用;据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数考点: 一元二次方程的应用;二元一次方程组的应用;一元一次不等式的应用专题: 应用题分析: (1)设2014年购买药品的费用为x万元,根据购买健身器材的费用不超过总投入的,列出不等式,求出不等式的解集即可得到结果;(2)设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30y)万元,2015年购买健身器材的费用为(1+50%)(30y)万元,购买药品的费用为(1)y万元,根据题意列出方程,求出方程的解得到y的值,即可得到结果;设这个相同的百分数为m,则2015年健身家庭的药品费用为200(1+m),根据2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,列出方程,求出方程的解即可得到结果解答: 解:(1)设2014年购买药品的费用为x万元,根据题意得:30x30,解得:x10,则2014年最低投入10万元购买商品;(2)设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30y)万元,2015年购买健身器材的费用为(1+50%)(30y)万元,购买药品的费用为(1)y万元,根据题意得:(1+50%)(30y)+(1)y=30,解得:y=16,30y=14,则2014年购买药品的总费用为16万元;设这个相同的百分数为m,则2015年健身家庭的药品费用为200(1+m),2015年平均每户健身家庭的药品费用为(1m)万元,依题意得:200(1+m)(1m)=(1+50%)14,解得:m=,m0,m=50%,200(1+m)=300(户),则2015年该社区健身家庭的户数为300户点评: 此题考查了一元二次方程的应用,二元一次方程组的应用,以及一元一次不等式的应用,熟练掌握运算法则是解本题的关键23如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作O,交DC于D,G两点,AD分别于EF,GF交于I,H两点(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,求证:FD=FI;设AC=2m,BD=2n,求O的面积与菱形ABCD的面积之比考点: 圆的综合题;等腰三角形的判定;直角三角形斜边上的中线;勾股定理;三角形中位线定理;平行四边形的判定与性质;菱形的性质专题: 综合题分析: (1)根据直径所对的圆周角是直角即可得到FDE=90;(2)由四边形ABCD是菱形可得ABCD,要证四边形FACD是平行四边形,只需证明DFAC,只需证明AEB=FDE,由于FDE=90,只需证明AEB=90,根据四边形ABCD是菱形即可得到结论;(3)连接GE,如图,易证GE是ACD的中位线,即可得到GEDA,即可得到FHI=FGE=FGE=90根据直角三角形斜边上的中线等于斜边的一半可得DG=GE,从而有=,根据圆周角定理可得1=2,根据等角的余角相等可得3=4,根据等角对等边可得FD=DI;易知SO=()2=m2,S菱形ABCD=2m2n=2mn,要求O的面积与菱形ABCD的面积之比,只需得到m与n的关系,易证EI=EA=m,DF=AC=2m,EF=FI+IE=DF+AE=3m,在RtDEF中运用勾股定理即可解决问题解答: 解:(1)EF是O的直径,FDE=90;(2)四边形FACD是平行四边形理由如下:四边形ABCD是菱形,ABCD,ACBD,AEB=90又FDE=90,AEB=FDE,ACDF,四边形FACD是平行四边形;(3)连接GE,如图四边形ABCD是菱形,点E为AC中点G为线段DC的中点,GEDA,FHI=FGEEF是O的直径,FGE=90,FHI=90DEC=AEB=90,G为线段DC的中点,DG=GE,=,1=21+3=90,2+4=90,3=4,FD=FI;ACDF,3=64=5,3=4,5=6,EI=EA四边形ABCD是菱形,四边形FACD是平行四边形,DE=BD=n,AE=AC=m,FD=AC=2m,EF=FI+IE=FD+AE=3m在RtEDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=m,SO=()2=m2,S菱形ABCD=2m2n=2mn=2m2,SO:S菱形ABCD=点评: 本题主要考查了菱形的性质、圆周角定理、平行四边形的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理、等角的余角相等、等角对等边、平行线的性质、勾股定理、圆及菱形的面积公式等知识,综合性强,证到IE=EA,进而得到EF=3m是解决第3(2)小题的关键24如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线y=ax2+bx+n(a0)过E,A两点(1)填空:AOB=45,用m表示点A的坐标:A(m,m);(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且=时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围考点: 二次函数综合题专题: 综合题分析: (1)由B与C的坐标求出OB与OC的长,根据OCOB表示出BC的长,由题意AB=2BC,表示出AB,得到AB=OB,即三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得:OD=DA=m,即可确定出A坐标;(2)DOEABC,理由如下:根据题意表示出A与B的坐标,由=,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入整理得到m与n的关系式,利用两边对应成比例且夹角相等的三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入y=ax2+bx+c,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围解答: 解:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为:45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),=,P(2m,m),A为抛物线的顶点,设抛物线解析式为y=a(xm)2m,抛物线过点E(0,n),n=a(0m)2m,即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线y=ax2+bx+c过点E,A,整理得:am+b=1,即b=1am;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为y=x2x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2(1+am)2m=2m,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为a1点评: 此题属于二次函数综合题,涉及的知识有:坐标与图形性质,等腰直角三角形的判定与性质,直线与抛物线的交点,以及二次函数的图象与性质,熟练掌握二次函数的性质是解本题的关键26
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!