资源描述
,章末复习,1对于复数zabi必须满足a、b均为实数,才能得出实部为a,虚部为b.对于复数相等必须先化为代数形式才能比较实部与虚部,题型一分类讨论思想的应用当复数的实部与虚部含有字母时,利用复数的有关概念进行分类讨论分别确定什么情况下是实数、虚数、纯虚数当xyi没有说明x,yR时,也要分情况讨论,题型二数形结合思想的应用数形结合既是一种重要的数学思想,又是一种常用的数学方法本章中,复数本身的几何意义、复数的模以及复数加减法的几何意义都是数形结合思想的体现它们得以相互转化涉及的主要问题有复数在复平面内对应点的位置、复数运算及模的最值问题等,题型三转化与化归思想的应用在求复数时,常设复数zxyi(x,yR),把复数z满足的条件转化为实数x,y满足的条件,即复数问题实数化的基本思想在本章中非常重要,跟踪演练3已知x,y为共轭复数,且(xy)23xyi46i,求x,y.解设xabi(a,bR),则yabi.又(xy)23xyi46i,4a23(a2b2)i46i,,题型四类比思想的应用复数加、减、乘、除运算的实质是实数的加减乘除,加减法是对应实、虚部相加减,而乘法类比多项式乘法,除法类比根式的分子分母有理化,只要注意i21.,高考对本章考查的重点有:1对复数的概念的考查是考查复数的基础,要求准确理解虚数单位、复数、虚数、纯虚数、共轭复数、实部、虚部、复数的模等概念,2对复数四则运算的考查可能性较大,要加以重视,其中复数的乘法运算与多项式的乘法运算类似;对于复数的除法运算,将分子分母同时乘以分母的共轭复数最后整理成abi(a,bR)的结构形式3对复数几何意义的考查在高考中一般会结合复数的概念、复数的加减运算考查复数的几何意义、复数加减法的几何意义,再见,
展开阅读全文