资源描述
,62直接证明与间接证明62.1直接证明:分析法与综合法,学习目标1了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点2结合已学过的数学实例,体会综合法的两种形象化说法:“顺推证法”或“由因导果法”;分析法又叫“逆推证法”或“执果索因法”了解综合法与分析法的流程框图、思考过程及特点,知识链接1综合法与分析法的推理过程是合情推理还是演绎推理?答综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”,预习导引1综合法从数学题的出发,经过逐步的最后达到待证结论或需求的问题,它是由,即“由因导果”2分析法从数学题的出发,一步一步地探索下去,最后达到,它是由,即“执果索因”.,已知条件,逻辑推理,已知走向求证,待证结论或需求问题,题设的已知条件,求证走向已知,规律方法利用综合法证明问题的步骤:(1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法(2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路(3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取,规律方法用分析法证明不等式时应注意(1)分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)分析法证明不等式的思维是从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(3)用分析法证明数学命题时,一定要恰当地用好“要证明”、“只需证明”、“即证明”等词语,规律方法综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P;若由P可推出Q,即可得证,只要证2ay2cx4xy.由得2ay2cxa(bc)c(ab)ab2acbc,4xy(ab)(bc)abb2acbcab2acbc,所以2ay2cx4xy.命题得证.,再见,
展开阅读全文