资源描述
(四)函数与导数(2)1(2016课标全国丙)设函数f(x)ln xx1.(1)讨论f(x)的单调性;(2)证明:当x(1,)时,11,证明:当x(0,1)时,1(c1)xcx.(1)解由题设,f(x)的定义域为(0,),f(x)1,令f(x)0解得x1.当0x0,f(x)单调递增;当x1时,f(x)0,f(x)单调递减(2)证明由(1)知,f(x)在x1处取得最大值,最大值为f(1)0.所以当x1时,ln xx1.故当x(1,)时,ln xx1,ln1,即11,设g(x)1(c1)xcx,则g(x)c1cxln c令g(x)0,解得x0.当x0,g(x)单调递增;当xx0时,g(x)0,g(x)单调递减由(2)知1c,故0x01.又g(0)g(1)0,故当0x0.所以当x(0,1)时,1(c1)xcx.2(2016课标全国甲)已知函数f(x)(x1)ln xa(x1)(1)当a4时,求曲线yf(x)在(1,f(1)处的切线方程;(2)若当x(1,)时,f(x)0,求a的取值范围解(1)f(x)的定义域为(0,),当a4时,f(x)(x1)ln x4(x1),f(x)ln x3,f(1)2,f(1)0,曲线yf(x)在(1,f(1)处的切线方程为2xy20.(2)当x(1,)时,f(x)0等价于ln x0,设g(x)ln x,则g(x),g(1)0.当a2,x(1,)时,x22(1a)x1x22x10,故g(x)0,g(x)在(1,)单调递增,因此g(x)0;当a2时,令g(x)0得,x1a1,x2a1.由x21和x1x21得x11,故当x(1,x2)时,g(x)0,g(x)在(1,x2)单调递减,因此g(x)f(x)对于任意的x1,2成立(1)解f(x)的定义域为(0,),f(x)a.当a0时,x(0,1)时,f(x)0,f(x)单调递增,x(1,)时,f(x)0时,f(x).0a1,当x(0,1)或x时,f(x)0,f(x)单调递增,当x时,f(x)2时,00,f(x)单调递增;当x时,f(x)0,f(x)单调递减综上所述,当a0时,f(x)在(0,1)内单调递增,在(1,)内单调递减;当0a2时,f(x)在内单调递增,在内单调递减,在(1,)内单调递增(2)证明由(1)知,a1时,f(x)f(x)xln xxln x1,x1,2设g(x)xln x,h(x)1,x1,2,则f(x)f(x)g(x)h(x)由g(x)0,可得g(x)g(1)1,当且仅当x1时取得等号又h(x).设(x)3x22x6,则(x)在x1,2内单调递减因为(1)1,(2)10,所以x0(1,2),使得x(1,x0)时,(x)0,x(x0,2)时,(x)g(1)h(2),即f(x)f(x)对于任意的x1,2成立
展开阅读全文