初中圆知识点及练习题.doc

上传人:sha****en 文档编号:10315639 上传时间:2020-04-11 格式:DOC 页数:15 大小:484.50KB
返回 下载 相关 举报
初中圆知识点及练习题.doc_第1页
第1页 / 共15页
初中圆知识点及练习题.doc_第2页
第2页 / 共15页
初中圆知识点及练习题.doc_第3页
第3页 / 共15页
点击查看更多>>
资源描述
第三章 圆【课标要求】(1)认识圆并掌握圆的有关概念和计算知道圆由圆心与半径确定,了解圆的对称性.通过图形直观识别圆的弦、弧、圆心角等基本元素.利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理.探索并了解圆周角与圆心角的关系、直径所对圆周角的特征.掌握垂径定理及其推论,并能进行计算和说理.了解三角形外心、三角形外接圆和圆内接三角形的概念.掌握圆内接四边形的性质(2)点与圆的位置关系能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系.知道“不在同一直线上的三个点确定一个圆”并会作图.(3)直线与圆的位置关系 能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系. 了解切线的概念. 能运用切线的性质进行简单计算和说理. 掌握切线的识别方法. 了解三角形内心、三角形内切圆和圆的外切三角形的概念. 能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算.(4)圆与圆的位置关系 了解圆与圆的五种位置关系及相应的数量关系.能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量.掌握求扇形面积的两个计算公式,并灵活运用.了解圆锥的高、母线等概念.结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图.会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用.能综合运用基本图形的面积公式求阴影部分面积.2、基础知识(1)掌握圆的有关性质和计算弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半. 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系 设点与圆心的距离为,圆的半径为,则点在圆外; 点在圆上; 点在圆内 过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆. 三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系 设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. 到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线. 三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等. 切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系圆与圆的位置关系有五种:外离、外切、相交、内切、内含. 设两圆心的距离为,两圆的半径为,则两圆外离 两圆外切 两圆相交 两圆内切 两圆内含 两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦. 两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线. 公切线上两个切点的距离叫做公切线的长. (5)与圆有关的计算 弧长公式: 扇形面积公式:(其中为圆心角的度数,为半径) 圆柱的侧面展开图是矩形圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体圆柱的侧面积底面周长高 圆柱的全面积侧面积底面积 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体 圆锥的侧面积底面周长母线;圆锥的全面积侧面积底面积3、能力要求例1 如图,AC为O 的直径,B、D、E都是O上的点,求A+B +C的度数.【分析】由AC为直径,可以得出它所对的圆周角是直角,所以连结AE,这样将CAD(A)、C放在了AEC中,而B与EAD是同弧所对的圆周角相等,这样问题迎刃而解【解】连结AEAC是O的直径AEC=90O CAD +EAD+C =90O B=EADCAD +B+C =90O【说明】这里通过将B转化为EAD,从而使原本没有联系的A、B 、C都在 AEC中,又利用“直径对直角”得到它们的和是90O解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法练习二一、知识点:、确定圆的条件1过已知两点的圆的圆心组成的图形是_,_确定一个圆2.三角形的三个顶点确定一个圆,这个圆叫做三角形的_,它的圆心叫做三角形的_,它是三角形_的交点;这个三角形叫做圆的_-3三角形外心的位置:锐角三角形的外心在_;直角三角形的外心是_;钝角三角形的外心在_直线和圆的位置关系1直线和圆的位置关系有三种:(1)_;(2)_;(3)_2当直线和圆 _公共点时,叫做直线和圆相交,此时圆心到直线的距离_半径;当直线和圆 _公共点时,叫做直线和圆相切,此时圆心到直线的距离_半径;当直线和圆 _公共点时,叫做直线和圆相离,此时圆心到直线的距离_半径;PAO3切线的性质:圆的切线_如图可表述为: 或:PA切O于点A_4判定直线为圆的切线:经过_,并且垂直于_的直线是圆的切线。如图可表述为:5和三角形各边_的圆叫做三角形的_,它的圆心叫做三角形的_,是三角形_的交点; 这个三角形叫做圆的_-6.过圆外一点可引圆的_条切线,这个点到各个切点的距离_。 二、一些常见关系及辅助线作法:7.已知O中,直径CDAB于点E,若ar,则AOB_,d_(用含r的代数式表示)若ar,则AOB_,d_(用含r的代数式表示)若ar,则AOB_,d_(用含r的代数式表示)8. 已知ABC是O的内接三角形,I的外切三角形。设O的半径为R,I的半径为r。若ABC的周长为s,则ABC的面积与s,r的关系为_若ABC是边长为a的等边三角形,则R_,r_(用含a的代数式表示)若ABC是直角边长为a, b,斜边长为c的直角三角形,则R_,r_(用含a, b, c的代数式表示)若ABC是直角边长为a的等腰直角三角形,则R_,r_(用含a的代数式表示)若ABC是腰长为a,顶角为120的等腰三角形,则R_(用含a的代数式表示)9.已知直线是圆的切线,常作的辅助线是连接_得_10.证明一条直线是圆的切线方法:证明直线和圆只有一个公共点(不常用)已知直线和圆有一个公共点时所作的辅助线为_,证明_已知中没有说明直线和圆的公共点时所作的辅助线为_,证明_11. 作ABC的外接圆的方法:分别作两边的_,使这两条直线交于点O,以为圆心,OA为半径作圆。所作的圆就是ABC的外接圆。12作ABC的内切圆的方法:分别作两内角的_,使这两条线段交于点I;过I作IEBC于E;以I为圆心,IE为半径作圆。所作的圆就是ABC的内切圆。三、课堂练习题:13下列命题中,真命题的个数是 ( )经过三点一定可以作圆;任意一个圆一定有一个内接三角形,并且只有一个内接三角形。任意一个三角形一定有一个外接圆,并且只有一个外接圆,三角形的外心到三角形的三个顶点距离相等。A. 4个 B. 3个 C. 2个 D. 1个14如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),则该圆弧所在的圆的圆心的坐标 。 第14题 第15题 第16题15. 图中ABC外接圆的圆心坐标是 16. 如图,方格纸上一圆经过(2,5),(2,3)两点,则该圆圆心的坐标为 17. 一只猫观察到一老鼠洞的全部三个出口,它们不在一条直线上,这只猫应蹲在_地方,才能最省力地顾及到三个洞口。18.圆外切平行四边形是_形,圆内接平行四边形是_形。19已知直线a:yx3和点A(0,3),B(3,0).设P为a上一点,试判断P、A、B是否在同一个圆上。20.如图,已知圆的内接三角形ABC中,ABAC,D是BC边上的一点,E是直线AD的延长线与ABC外接圆的交点。(1)求证:AB2ADAE(2)当D为BC延长线上一点时,第(1)问的结论成立吗?如果成立,请证明,如果不成立,请说明理由。 21.直线AB经过O上一点C,且OAOB,CACB,求证直线AB是O的切线。ADEBC22.直角梯形ABCD中,AB90,ADBC,E为AB上一点,DE平分ADC,CE平分BCD,则以AB为直径的圆与边CD有怎样的位置关系?四、课后练习题:1. RtABC中,C90,BC5 ,AC12 则其外接圆半径为 2. 若直角三角形的两直角边长分别为6,8,则这个三角形的外接圆直径是 3. 等腰三角形ABC内接于半径为5cm的O中,若底边BC8cm,则ABC的面积是 4. 在RtABC中,如果两条直角边的长分别为3、4,那么RtABC的外接圆的面积为 5. 等边三角形的边长为4,则此三角形外接圆的半径为6边长为6的正三角形的内切圆的半径是( )A. B. 2 C. D. 2 7ABC中A90,ABAC,以A为圆心的圆切BC于,若BC12CM,则A的半径d为cm8. 如图,AB是的直径,CAB30,过C作的切线交AB的延长线于D,OD15cm, 则AB cm 第8题 第13题 第15题9. 已知等边三角形ABC的边长为2,那么这个三角形的内切圆的半径为_ 10. Rt ABC中,C90,AB10,AC6,以C为圆心作C 与AB相切,则C的半径为_ 11. 已知O的直径为6,P为直线l上一点,OP3,那么直线l与O的位置关系是 12. 若一个直角三角形的斜边长为10,其内切圆半径为2,则这个三角形的周长是_13. 如图,PA切于点A,PO交于点,若PA,BP4,则的半径为()A. B. C.2 D.514. 以三角形的一边为直径的圆恰好与另一边相切,则此三角形是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形15如图,是一块残破的圆轮片,A、B、C是圆弧上的三点作出弧ACB所在的O(不写作法,保留作图痕迹)如果ACBC60cm,ACB120,求该残破圆轮片的半径。 16已知圆的直经为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有_ 公共点。 17. 在RtABC中,ACB90,AB5cm, AC3cm,以点C为圆心,r为半径的圆与AB有何位置关系?为什么?18如图,AB是O的直径,C为O上一点,ADCD,( 点D在O外)AC平分BAD (1)求证:CD是O的切线(2)若DC、AB的延长线相交于点E,且DE12,AD9,求BE的长。19如图,在RtABC中,B90,BAC 的平分线交BC于D,E为AB上一点,DEDC,以D为圆心,DB的长的半径作圆,求证:(1)AC是D的切线(2)AB+EBAC20一个圆球放置在V形架中,如图是它的平面示意图,CA和CB是O的切线,切点分别为A,B,如果O的半径为cm且AB6m,求ACB的度数。21. 如图,ABC 内接于O ,AD是ABC的高,O的直径AE交BC于点F,点P在BC的延长线上,CAPB(1)求证:PA是O的切线(2)求证:PCPBPDPF初中数学总复习:圆专题训练(一)选择题(每题3分,共30分)1有下列四个命题:直径是弦;经过三个点一定可以作圆;三角形的外心到三角形各顶点的距离都相等;半径相等的两个半圆是等弧其中正确的有( )(A)4个 (B)3个 (C)2个 (D)1个2下列判断中正确的是( )(A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧(C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦3如图,在两半径不同的同心圆中,AOBAOB60,则( )(A)(B)(C)的度数的度数(D)的长度的长度4如图,已知O的弦AB、CD相交于点E,的度数为60,的度数为100,则AEC等于( )(A)60 (B)100 (C)80 (D)1305圆内接四边形ABCD中,A、B、C的度数比是236,则D的度数是( )(A)67.5 (B)135 (C)112.5 (D)1106OA平分BOC,P是OA上任一点,C不与点O重合,且以P为圆心的圆与OC相离,那么圆P与OB的位置关系是( )(A)相离 (B)相切 (C)相交 (D)不确定7ABC的三边长分别为a、b、c,它的内切圆的半径为r,则ABC的面积为( )(A)(abc)r (B)2(abc)(C)(abc)r (D)(abc)r8如图,已知四边形ABCD为圆内接四边形,AD为圆的直径,直线MN切圆于点B,DC的延长线交MN于G,且cos ABM,则tan BCG的值为( )(A) (B) (C)1 (D)9在O中,弦AB和CD相交于点P,若PA3,PB4,CD9,则以PC、PD的长为根的一元二次方程为( )(A)x29 x120 (B)x29 x120(C)x27 x90 (D)x27 x9010已知半径分别为r和2 r的两圆相交,则这两圆的圆心距d的取值范围是( )(A)0d3 r (B)rd3 r (C)rd3 r (D)rd3 r(二)填空题(每题3分,共30分)11某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_12如图,已知AB为O的直径,E20,DBC50,则CBE_13圆内接梯形是_梯形,圆内接平行四边形是_14如图,AB、AC是O的切线,将OB延长一倍至D,若DAC60,则D_15如图,BA与O相切于B,OA与O相交于E,若AB,EA1,则O的半径为_16已知两圆的圆心距为3,半径分别为2和1,则这两圆有_条公切线17正八边形有_条对称轴,它不仅是_对称图形,还是_对称图形18边长为2 a的正六边形的面积为_19扇形的半径为6 cm,面积为9 cm2,那么扇形的弧长为_,扇形的圆心角度数为_20用一张面积为900 cm2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为_(三)判断题(每题2分,共10分)21相交两圆的公共弦垂直平分连结这两圆圆心的线段( )22各角都相等的圆内接多边形是正多边形( )23正五边形既是轴对称图形,又是中心对称图形( )24三角形一定有内切圆( )25平分弦的直径垂直于弦( )(四)解答题:(共50分)26(8分)如图,O的直径AB和弦CD相交于点E,且AE1 cm,EB5 cm,DEB60,求CD的长27(8分)如图,AB为O的直径,P为BA的延长线上一点,PC切O于点C,CDAB,垂足为D,且PA4,PC8,求tan ACD和sin P的值。28(8分)如图,已知ABCD是圆内接四边形,EB是O的直径,且EBAD,AD与BC的延长线交于F,求证 。29(12分)已知:如图,O1与O2内切于点P,过点P的直线交O1于点D,交O2于点E;DA与O2相切,切点为C*(1)求证PC平分APD;(2)若PE3,PA6,求PC的长30(14分)如图,O是以AB为直径的ABC的外接圆,点D是劣弧的中点,连结AD并延长,与过C点的切线交于P,OD与BC相交于点E(1)求证OEAC;*(2)求证:;(3)当AC6,AB10时,求切线PC的长
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!