资源描述
20122013学年上学期九年级期中考试数 学 试 题题号一二三总分189151617181920212223分数一、选择题(每小题3分,共24分)1. 已知x=2是一元二次方程x2-mx+2=0的一个解,则m的值是()A-3 B 3C 0 D 62.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A逐渐变短B逐渐变长C先变短后变长D先变长后变短3. 如图,在ABC中,ABC和ACB的平分线交于点E,过点E作MNBC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为() A6 B7 C8 D94.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A20或16 B 20 C 16 D以上答案均不对5.用配方法解关于x的一元二次方程x22x3=0,配方后的方程可以是()A(x1)2=4 B(x+1)2=4C(x1)2=16 D(x+1)2=166.在反比例函数的图象上有两点(1,y1),则y1y2的值是() A负数 B非正数 C正数 D不能确定7.已知等腰ABC中,ADBC于点D,且AD=BC,则ABC底角的度数为()A45B75C60D45或758.如图,在菱形ABCD中,A=60,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:BGD=120 ;BG+DG=CG;BDFCGB;其中正确的结论有( )A1个 B2个 C3个 D4个 二、填空题(每小题3分,共21分)9.方程x2-9=0的根是 10.若一元二次方程有实数解,则m的取值范围是 11. 平行四边形ABCD中,A+C=100,则B= 度12.如图,在ABC中,AB=AD=DC,BAD=20,则C= 13.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是 .14.如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是 15.如图,边长12cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上若BF=3cm,则小正方形的边长等于 .三、解答题(共75分)16. (8分)解方程:(1) 2(x-3)=3x(x-3) (2)17. (9分)如图,在ABC中,AB=AC,ABC=72(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC的平分线BD后,求BDC的度数ABCDO18. (9分)如图,已知ACBC,BDAD,AC 与BD 交于O,AC=BD 21世纪教育网求证:(1)BC=AD; (2)OAB是等腰三角形 19.(9分) 如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段(用线段MG表示);(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树20. (9分) 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长21. (10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.(10分)一位同学拿了两块45的三角尺MNK、ACB做了一个探究活动:将MNK的直角顶点M放在ABC的斜边AB的中点处,设AC=BC=a(1)如图1,两个三角尺的重叠部分为ACM,则重叠部分的面积为 ,周长为 . (2)将图1中的MNK绕顶点M逆时针旋转45,得到图2,此时重叠部分的面积为 ,周长为 . 2(3)如果将MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证23.(11分)如图,已知反比例函数的图像经过第二象限内的点A(1,m),ABx轴于点B,AOB的面积为2若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2)C 求直线y=ax+b的解析式;设直线y=ax+b与x轴交于点M,求AM的长九年级数学参考答案一、选择题(每小题3分,共24分)1. B2.C3. D4.B5.A6.A 7. D 8.C二、填空题(每小题3分,共21分)9. x1=3,x2= -3 10. 11.130 12.40 13.- 4 14. 15. cm三、解答题(共75分)16. (8分) (给出因式分解法,其它方法亦按步给分)(1)解答:2(x-3)=3x(x-3)移项,得2(x-3)-3x(x-3)=0整理,得(x-3)(2-3x)=0x-3=0或2-3x=0解得:x1=3,x2=(2)解答:(给出配方法,公式法等其它方法亦按步给分)原方程化为:x24x=1 配方,得x24x+4=1+4 整理,得(x2)2=5 x2=, 即,. 17. (9分) 解答:(1)如图(非尺规不保留痕迹者不给分) (3分)(2)在ABC中,AB=AC,ABC=72,A=1802ABC=180144=36,AD是ABC的平分线,ABD=ABC=72=36, BDC是ABD的外角,BDC=A+ABD=36+36=72 (9分)18. (9分)解答:证明:(1)ACBC,BDAD D =C=90 在RtACB和 RtBDA 中,AB= BA ,AC=BD, RtACB RtBDA(HL) BC=AD (6分) (2)由ACB BDA得 C AB =D BA OA=OB OAB是等腰三角形 (9分)19.(9分) 解:(1)点P是灯泡的位置; (3分)(2)线段MG是大树的高 (6分)(3)视点D看不到大树,MN处于视点的盲区(叙述不清,只要抓住要点,酌情给分) (9分)20. (9分) 解答:(其它正确的证明方法,亦按步给分)(1)证明:四边形ABCD是矩形,ADBC,MDO=NBOMN是BD的中垂线,DO=BO ,BDMN,MD=MB在MOD和NOB中,MDO=NBO,DO=BO, MOD=NOBMODNOB(ASA)MD=NB又MDNB四边形BMDN是平行四边形,MD=MB平行四边形BMDN是菱形 (5分)(2)解:根据(1)可知:设MD长为x,则MB=DM=x,AM=8-x在RtAMB中,BM2=AM2+AB2即x2=(8x)2+42,解得:x=5,答:MD长为5 (9分)21. (10分) 解答:(1)解:设每千克核桃应降价x元 根据题意,得 (60x40)(100+20)=2240 化简,得 x210x+24=0 解得x1=4,x2=6 答:每千克核桃应降价4元或6元 (6分)(2)解:由(1)可知每千克核桃可降价4元或6元 因为要尽可能让利于顾客,所以每千克核桃应降价6元 此时,售价为:606=54(元), 答:该店应按原售价的九折出售 (10分)22.(10分)解答:(1), (1+)a. (2分)(2),2a (4分)(3)猜想:重叠部分的面积为 (5分)理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G设MN与AC的交点为E,MK与BC的交点为FM是ABC斜边AB的中点,AC=BC=aMH=MG=又HME+HMF=GMF+HMF=90,HME=GMF,RtMHERtMGF(HL) 阴影部分的面积等于正方形CGMH的面积正方形CGMH的面积是MGMH=阴影部分的面积是. (10分)23.(11分) 解答:(1)点A(-1,m)在第二象限内,AB = m,OB = 1,即:,解得, A (-1,4), 点A (-1,4),在反比例函数的图像上,4 =,解,反比例函数为,又反比例函数的图像经过C(n,),解得,C (2,-2),直线过点A (-1,4),C (2,-2) 解方程组得 直线的解析式为 ;(6分)(2)当y = 0时,即解得,即点M(1,0) 在中,AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM= (11分)九年级数学 第15页共6页
展开阅读全文