混凝土地基本知识

上传人:无*** 文档编号:86920015 上传时间:2022-05-08 格式:DOC 页数:13 大小:143KB
返回 下载 相关 举报
混凝土地基本知识_第1页
第1页 / 共13页
混凝土地基本知识_第2页
第2页 / 共13页
混凝土地基本知识_第3页
第3页 / 共13页
点击查看更多>>
资源描述
混凝土的基本知识1.定义: 1.1由胶凝材料.水.粗集料.细集料.以及必要时掺入化学外加剂和矿物掺合料,按一定比例配合,经搅拌.捣实成型.养护硬化而成的一种人造石材.2.1.胶凝材料:混凝土中水泥和矿物掺合料的总称。2.1.1水泥品种与强度等级的选用应根据设计、施工要求以及工程所处环境确定。对于一般建筑结构及预制构件的普通混凝土,宜采用通用硅酸盐水泥;高强混凝土和有抗冻要求的混凝土宜采用硅酸盐水泥或普通硅酸盐水泥。212水泥质量主要控制项目应包括凝结时间、安定性、胶砂强度.细度或比表面积。213水泥的应用应符合下列规定:1宜采用新型干法窑生产的水泥。2用于生产混凝土的水泥温度不宜高于60。22矿物掺合料221用于混凝土中的矿物掺合料可包括粉煤灰、粒化高炉矿渣粉、硅灰、;可采用两种或两种以上的矿物掺合料按一定比例混合使用。粉煤灰应符合现行国家标准用于水泥和混凝土中的粉煤灰GBT 1596的有关规定,粒化高炉矿渣粉应符合现行国家标准用于水泥和混凝土中的粒化高炉矿渣粉G13T 18046的有关规定,钢渣粉应符合现行国家标准用于水泥和混凝土中的钢渣粉GBT 20491的有关规定,其他矿物掺合料应符合相关现行国家标准的规定并满足混凝土性能要求;矿物掺合料的放射性应符合现行国家标准建筑材料放射性核素限量GB 6566的有关规定。222粉煤灰的主要控制项目应包括细度、需水量比、烧失量和三氧化硫含量,C类粉煤灰的主要控制项目还应包括游离氧化钙含量和安定性;粒化高炉矿渣粉的主要控制项目应包括比表面积、活性指数和流动度比;钢渣粉的主要控制项目应包括比表面积、活性指数、流动度比、游离氧化钙含量、三氧化硫含量、氧化镁含量和安定性;磷渣粉的主要控制项目应包括细度、活性指数、流动度比、五氧化二磷含量和安定性;硅灰的主要控制项目应包括比表面积和二氧化硅含量。矿物掺合料的主要控制项目还应包括放射性。223矿物掺合料的应用应符合下列规定:1掺用矿物掺合料的混凝土,宜采用硅酸盐水泥和普通硅酸盐水泥。2在混凝土中掺用矿物掺合料时,矿物掺合料的种类和掺量应经试验确定。3矿物掺合料宜与高效减水剂同时使用。4对于高强混凝土或有抗渗、抗冻、抗腐蚀、特殊要求的混凝土,不宜采用低于级的粉煤灰。5对于高强混凝土和有耐腐蚀要求的混凝土,硅灰时,不宜采用二氧化硅含量小于90的硅灰。23粗骨料231粗骨料应符合现行行业标准普通混凝土用砂、石质量及检验方法标准JGJ 52的规定。232粗骨料质量主要控制项目应包括颗粒级配、针片状颗粒含量、含泥量、泥块含量、压碎值指标和坚固性,用于高强混凝土的粗骨料主要控制项目还应包括岩石抗压强度。233粗骨料在应用方面应符合下列规定:1混凝土粗骨料宜采用连续级配。2对于混凝土结构,粗骨料最大公称粒径不得大于构件截面最小尺寸的14,且不得大于钢筋最小净问距的34;对混凝土实心板,骨料的最大公称粒径不宜大于板厚的13,且不得大于40mm;对于大体积混凝土,粗骨料最大公称粒径不宜小于315mm。3对于有抗渗、抗冻、抗腐蚀、耐磨或其他特殊要求的混凝土,粗骨料中的含泥量和泥块含量分别不应大于1.o和05;坚固性检验的质量损失不应大于8。4对于高强混凝土,粗骨料的岩石抗压强度应至少比混凝土设计强度高30;最大公称粒径不宜大于25mm,针片状颗粒含量不宜大于5且不应大于8;含泥量和泥块含量分别不应大于05和02%24细骨料241细骨料应符合现行行业标准普通混凝土用砂、石质量及检验方法标准JGJ 52的规定;混凝土用海砂应符合现行行业标准海砂混凝土应用技术规JGJ 206的有关规定。242细骨料质量主要控制项目应包括颗粒级配、细度模数、含泥量、泥块含量;海砂主要控制项目除应包括上述指标外尚应包括贝壳含量;人工砂主要控制项目除应包括上述指标外尚应包括石粉含量和压碎值指标,人工砂主要控制项目可不包括氯离子含量和有害物质含量。243细骨料的应用应符合下列规定:1泵送混凝土宜采用中砂,且300p-m筛孔的颗粒通过量不宜少于15%2对于有抗渗、抗冻或其他特殊要求的混凝土,砂中的含泥量和泥块含量分别不应大于3o和1o;坚固性检验的质量损失不应大于8。3对于高强混凝土,砂的细度模数宜控制在2630围之,含泥量和泥块含量分别不应大于2o和05。4钢筋混凝土和预应力混凝土用砂的氯离子含量分别不应大于006和002。5混凝土用海砂应经过净化处理。6不宜单独采用特细砂作为细骨料配制25外加剂251外加剂应符合国家现行标准混凝土外加剂GB 8076、混凝土防冻剂JC 475和混凝土膨胀剂GB 23439的有关规定。252外加剂质量主要控制项目应包括掺外加剂混凝土性能和外加剂匀质性两方面,混凝土性能方面的主要控制项目应包括减水率、凝结时间差和抗压强度比,外加剂匀质性方面的主要控制项目应包括pH值、氯离子含量和碱含量;引气剂和引气减水剂主要控制项目还应包括含气量;防冻剂主要控制项目还应包括含气量和50次冻融强度损失率比;膨胀剂主要控制项目还应包括凝结时间、限制膨胀率和抗压强度。253外加剂的应用除应符合现行国家标准混凝土外加剂应用技术规GB 50119的有关规定外,尚应符合下列规定:1在混凝土中掺用外加剂时,外加剂应与水泥具有良好的适应性,其种类和掺量应经试验确定。2高强混凝土宜采用高性能减水剂;有抗冻要求的混凝土宜采用引气剂或引气减水剂;大体积混凝土宜采用缓凝剂或缓凝减水剂;混凝土冬期施工可采用防冻剂。3外加剂中的氯离子含量和碱含量应满足混凝土设计要求。4宜采用液态外加剂。26水261混凝土用水应符合现行行业标准混凝土用水标准JGJ 63的有关规定。262混凝土用水主要控制项目应包括pH值、不溶物含量、可溶物含量、硫酸根离子含量、氯离子含量、水泥凝结时间差和水泥胶砂强度比。当混凝土骨料为碱活性时,主要控制项目还应包括碱含量。263混凝土用水的应用应符合下列规定:1未经处理的海水严禁用于钢筋混凝土和预应力混凝土。2当骨料具有碱活性时,混凝土用水不得采用混凝土企业生产设备洗涮水。31拌合物性能311混凝土拌合物性能应满足设计和施工要求。混凝土拌合物性能试验方法应符合现行国家标准普通混凝土拌合物性能试验方法标准GBT 50080的有关规定。312混凝土拌合物的稠度可采用坍落度、维勃稠度或扩展度表示。坍落度检验适用于坍落度不小于10mm的混凝土拌合物,维勃稠度检验适用于维勃稠度5s30s的混凝土拌合物,扩展度适用于泵送高强混凝土和自密实混凝土。坍落度、维勃稠度和扩展度的等级划分及其稠度允许偏差应分别符合表312一l、表3122、表3123。表312-1混凝土拌合物的坍落度等级坍落度(mm)S11040s25090s3100150S4160210S5220表312-2混凝土拌合物的维勃等级划分 稠度等级划分等级维勃稠度(s)vo31Vl3021v2ZO11V310653表312-3混凝土拌合物的扩展度等级划分等级扩展度(mm)等级扩展度(roan)F1340F4490550F2350410F5560620F3420480F6630313混凝土拌合物应在满足施工要求的前提下,尽可能采用较小的坍落度;泵送混凝土拌合物坍落度设计值不宜大于180mm。314泵送高强混凝土的扩展度不宜小于500mm;自密实混凝土的扩展度不宜小于600mm。315混凝土拌合物的坍落度经时损失不应影响混凝土的正常施工。泵送混凝土拌合物的坍落度经时损失不宜大于30mmh。316混凝土拌合物应具有良好的和易性,并不得离析或泌水。317混凝土拌合物的凝结时间应满足施工要求和混凝土性能32力学性能321混凝土的力学性能应满足设计和施工的要求。混凝土力学性能试验方法应符合现行国家标准普通混凝土力学性能试验方法标准GBT 50081的有关规定。322混凝土强度等级应按立方体抗压强度标准值(MPa)划分为clo、c15、C20、c25、C30、c35、c40、C45、C50、C55、C60、C65、C70、C75、C80、C85、C90、C95和C100。323混凝土抗压强度应按现行国家标准混凝土强度检验评定标准GBT 50107的有关规定进行检验评定,并应合格。33长期性能和耐久性能331混凝土的长期性能和耐久性能应满足设计要求。试验方法应符合现行国家标准普通混凝土长期性能和耐久性能试验方法标准GBT 50082的有关规定。4一般规定411混凝土生产施工之前,应制订完整的技术方案,并应做好各项准备工作。412混凝土拌合物在运输和浇筑成型过程中严禁加水。42原材料进场421、混凝土原材料进场时,供方应按规定批次向需方提供质量证明文件。质量证明文件应包括型式检验报告、出厂检验报告与合格证等,外加剂产品还应提供使用说明书。422原材料进场后,应按本标准第71节的规定进行进场检验。423水泥应采取防潮措施;出现结块的水泥不得用于混凝土工程;水泥出厂超过3个月应进行复检,合格者方可使用。424粗、细骨料堆场应有遮雨设施,并应符合有关环境保护的规定;粗、细骨料应按不同品种、规格分别堆放,不得混入杂物。425矿物掺合料存储时,应有明显标记,不同矿物掺合料以及水泥不得混杂堆放,应防潮防雨,并应符合有关环境保护的规定;矿物掺合料存储期超过3个月时,应进行复检,合格者方可使用。426外加剂的送检样品应与工程大批量进货一致,并应按不同的供货单位、品种和牌号进行标识,单独存放;粉状外加剂应防止受潮结块,如有结块,应进行检验,合格者应经粉碎至全部通过0.09m筛孔后方可使用;液态外加剂应储存在密闭容器,并应防晒和防冻,如有沉淀等异常现象,应经检验合格后方可使用。43计 量431原材料计量宜采用电子计量设备。计量设备的精度应符合现行国家标准混凝土搅拌站(楼)GBT 10171的有关规定,应具有法定计量部门签发的有效检定证书,并应定期校验。混凝土生产单位每月应自检1次;每一工作班开始前,应对计量设备进行零点校准。432每盘混凝土原材料计量的允许偏差应符合表432的规定,原材料计量偏差应每班检查1次。表432各种原材料计量的允许偏差(按质量计,)原材料种类计量允许偏差原材料种类计量允许偏差胶凝材料土2拌合用水土1粗、细骨料3外加剂l433对于原材料计量,应根据粗、细骨料含水率的变化,及时调整粗、细骨料和拌合用水的称量。44搅 拌441混凝土搅拌机应符合现行国家标准混凝土搅拌机GBT 9142的有关规定。混凝土搅拌宜采用强制式搅拌机。442原材料投料方式应满足混凝土搅拌技术要求和混凝土拌合物质量要求。443同一盘混凝土的搅拌匀质性应符合下列规定:1混凝土中砂浆密度两次测值的相对误差不应大于08。2混凝土稠度两次测值的差值不应大于表312-4规定的混凝土拌合物稠度允许偏差的绝对值。444冬期施工搅拌混凝土时,宜优先采用加热水的方法提高拌合物温度,也可同时采用加热骨料的方法提高拌合物温度。当拌合用水和骨料加热时,拌合用水和骨料的加热温度不应超过表444的规定;当骨料不加热时,拌合用水可加热到60以上。应先投入骨料和热水进行搅拌,然后再投入胶凝材料等共同搅拌。表444拌合用水和骨料的最高加热温度()采用的水泥品种拌舍用水骨料硅酸盐水泥和普通硅酸盐水泥604045运 输451在运输过程中,应控制混凝土不离析、不分层,并应控制混凝土拌合物性能满足施工要求。452当采用机动翻斗车运输混凝土时,道路应平整。453 当采用搅拌罐车运送混凝土拌合物时,搅拌罐在冬期应有保温措施。454当采用搅拌罐车运送混凝土拌合物时,卸料前应采用快档旋转搅拌罐不少于20s。因运距过远、交通或现场等问题造成坍落度损失较大而卸料困难时,可采用在混凝土拌合物中掺人适量减水剂并快档旋转搅拌罐的措施,减水剂掺量应有经试验确定的预案。455当采用泵送混凝土时,混凝土运输应保证混凝土连续泵送,并应符合现行行业标准混凝土泵送施工技术规程JGJT10的有关规定。456混凝土拌合物从搅拌机卸出至施工现场接收的时间间隔不宜大于90min。46浇筑成型461浇筑混凝土前,应检查并控制模板、钢筋、保护层和预埋件等的尺寸、规格、数量和位置,其偏差值应符合现行国家标准混凝土结构工程施工质量验收规GB 50204的有关规定,并应检查模板支撑的稳定性以及接缝的密合情况,应保证模板在混凝土浇筑过程中不失稳、不跑模和不漏浆。462浇筑混凝土前,应清除模板以及垫层上的杂物;表面干燥的地基土、垫层、木模板应浇水湿润。463当夏季天气炎热时,混凝土拌合物入模温度不应高于35C,宜选择晚间或夜间浇筑混凝土;现场温度高于35时,宜对金属模板进行浇水降温,但不得留有积水,并宜采取遮挡措施避免照射金属模板。464 当冬期施工时,混凝土拌合物人模温度不应低于5。C,并应有保温措施。465在浇筑过程中,应有效控制混凝土的均匀性、密实性和整体性。466泵送混凝土输送管道的最小径宜符合表466的规定;混凝土输送泵的泵压应与混凝土拌合物特性和泵送高度相匹配;泵送混凝土的输送管道应支撑稳定,不漏浆,冬期应有保温措施,夏季施工现场最高气温超过40时,应有隔热措施。表666泵送混凝土输送管道的最小径(ram)扭骨料最大公称粒径输送管道最小径2512540150467不同配合比或不同强度等级泵送混凝土在同一时间段交替浇筑时,输送管道中的混凝土不得混入其他不同配合比或不同强度等级混凝土。468当混凝土自由倾落高度大于3Om时,宜采用串筒、溜管或振动溜管等辅助设备。 469浇筑竖向尺寸较大的结构物时,应分层浇筑,每层浇筑厚度宜控制在300mm350mm;大体积混凝土宜采用分层浇筑方法,可利用自然流淌形成斜坡沿高度均匀上升,分层厚度不应大于500mm;对于清水混凝土浇筑,可多安排振捣棒,应边浇筑混凝土边振捣,宜连续成型。4610 自密实混凝土浇筑布料点应结合拌合物特性选择适宜的间距,必要时可以通过试验确定混凝土布料点下料间距。4611应根据混凝土拌合物特性及混凝土结构、构件或制品的制作方式选择适当的振捣方式和振捣时间。4612混凝土振捣宜采用机械振捣。当施工无特殊振捣要求时,可采用振捣棒进行捣实,插人间距不应大于振捣棒振动作用半径的一倍,连续多层浇筑时,振捣棒应插人下层拌合物约50mm进行振捣;当浇筑厚度不大于200rata的表面积较大的平面结构或构件时,宜采用表面振动成型;当采用干硬性混凝土拌合物浇筑成型混凝土制品时,宜采用振动台或表面加压振动成型。4613振捣时间宜按拌合物稠度和振捣部位等不同情况,控制在lOs30s,当混凝土拌合物表面出现泛浆,基本无气泡逸出,可视为捣实。4614混凝土拌合物从搅拌机卸出后到浇筑完毕的延续时间不宜超过表4614的规定。表4614混凝土拌合物从搅拌机卸出后到浇筑完毕的延续时间(min)气温2525预拌混凝土搅拌站150120施工现场12090混凝土制品厂90604615在混凝土浇筑同时,应制作供结构或构件出池、拆模、吊装、拉、放和强度合格评定用的同条件养护试件,并应按设计要求制作抗冻、抗渗或其他性能试验用的试件。4616在混凝土浇筑及静置过程中,应在混凝土终凝前对浇筑面进行抹面处理。4617混凝土构件成型后,在强度达到l.2MPa以前,不得在构件上面踩踏行走。47养 护471生产和施工单位应根据结构、构件或制品情况、环境条件、原材料情况以及对混凝土性能的要求等,提出施工养护方案或生产养护制度,并应严格执行。472混凝土施工可采用浇水、覆盖保湿、喷涂养护剂、冬季蓄热养护等方法进行养护;混凝土构件或制品厂生产可采用蒸汽养护、湿热养护或潮湿自然养护等方法进行养护。选择的养护方法应满足施工养护方案或生产养护制度的要求。473采用塑料薄膜覆盖养护时,混凝土全部表面应覆盖严密,并应保持膜有凝结水;采用养护剂养护时,应通过试验检验养护剂的保湿效果。474对于混凝土浇筑面,尤其是平面结构,宜边浇筑成型边采用塑料薄膜覆盖保湿。475混凝土施工养护时间应符合下列规定:1对于采用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥配制的混凝土,采用浇水和潮湿覆盖的养护时问不得少于7d。2对于采用粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥、复合硅酸盐水泥配制的混凝土,或掺加缓凝剂的混凝土以及大掺量矿物掺合料混凝土,采用浇水和潮湿覆盖的养护时间不得少于14d。3对于竖向混凝土结构,养护时间宜适当延长。476混凝土构件或制品厂的混凝土养护应符合下列规定:1采用蒸汽养护或湿热养护时,养护时间和养护制度应满足混凝土及其制品性能的要求。2采用蒸汽养护时,应分为静停、升温、恒温和降温四个养护阶段。混凝土成型后的静停时间不宜少于2h,升温速度不宜超过25h,降温速度不宜超过20h,最高和恒温温度不宜超过65;混凝土构件或制品在出池或撤除养护措施前,应进行温度测量,当表面与外界温差不大于20时,构件方可出池或撤除养护措施。3采用潮湿自然养护时,应符合本节第472条第475条的规定。477对于大体积混凝土,养护过程应进行温度控制,混凝土部和表面的温差不宜超过25,表面与外界温差不宜大于20。478对于冬期施工的混凝土,养护应符合下列规定:1 日均气温低于5时,不得采用浇水自然养护方法。2混凝土受冻前的强度不得低于5MPa。3模板和保温层应在混凝土冷却到5方可拆除,或在混凝土表面温度与外界温度相差不大于20时拆模,拆模后的混凝土亦应及时覆盖,使其缓慢冷却。4混凝土强度达到设计强度等级的50时,方可撤除养护措施混凝土和易性和易性是一项综合的技术性质,包括流动性、粘聚性和保水性等三方面的含义,这三方面之间互相联系,但常存在矛盾。流动性是指混凝土拌合物在自重力或机械振动力作用下易于产生流动、易于输送和易于充满混凝土模板的性质。粘聚性是混凝土拌合物在施工过程中保持整体均匀一致的能力。粘聚性好可保证混凝土拌合物在输送、浇灌、成型等过程中,不发生分层、离析,即保证硬化后混凝土部结构均匀。保水性是混凝土拌合物在施工过程中保持水分的能力。保水性好可保证混凝土拌合物在输送、成型及凝结过程中,不发生大的或严重的泌水,既可避免由于泌水产生的大量的连通毛细孔隙,又可避免由于泌水,使水在粗骨料和钢筋下部聚积所造成的界面粘结缺陷。保水性对混凝土强度和耐久性有较大的影响。和易性测定方法及指标坍落度测定将混凝土拌合物按规定分三次装入坍落度筒中,每次用振捣棒按顺时针方向由筒中心向四周插捣25次,三次插捣完毕后将多余的混凝土刮平,垂直向上提起坍落度筒并移至一旁,混凝土拌合物由于自重将会产生坍落现象,然后用尺子量出混凝土坍落的尺寸就叫做坍落度。做坍落度试验测定拌合物的流动性,并辅以直观经验评定粘聚性和保水性。坍落度试验只适用骨料最大粒径不大于40mm,坍落度值不小于10mm且不大于220mm的混凝土拌合物。根据坍落度的不同,可将混凝土拌合物分为4级(低塑性混凝土、塑性混凝土、流动性混凝土、大流动性混凝土)。维勃稠度测定对于干硬性混凝土拌合物(坍落度值小于10mm ),通常用维勃稠度仪测定其维勃稠度(s) 。影响和易性主要因素(1)水泥浆数量以满足流动性为度,不宜过量。在水灰比不变的情况下,如果水泥浆越多,则拌合物的流动性越大。但若水泥浆过多,使拌合物的粘聚性变差。(2)水泥浆稠度(水灰比)水与水泥的质量比称为水灰比(W/C)。水灰比不宜过大或过小。水灰比过小时,混凝土拌合物流动性过小,会使施工困难,不能保证混凝土的密实性;水灰比过大时,又会造成混凝土拌合物的粘聚性和保水性不良。无论是水泥浆的多少,还是水泥浆的稠度,实际上对混凝土拌合物流动性起决定作用的是用水量的多少。(3)砂率砂率是指砂用量与砂、石总用量的质量百分比。砂率不宜过大或过小,存在一合理砂率。砂率过大时,骨料的总表面积增大,包裹集料的水泥浆层变薄,拌合物流动性降低;砂率过小,则会使拌合物粘聚性和保水性变差,产生离析、流浆等现象。影响合理砂率的因素:石子最大粒径与级配、砂的细度模数、水灰比、流动性要求、外加剂等。 施工时应尽量选用较小的砂率,以节约水泥。(4)水泥品种和骨料的性质1、水泥方面:水泥对和易性的影响主要表现在水泥的需水性上。使用不同水泥拌制的混凝土,其和易性由好至坏的顺序:粉煤灰水泥普通水泥、硅酸盐水泥矿渣水泥(流动性大,但粘聚性差)火山灰水泥(流动性差,但粘聚性和保水性好)。2、骨料方面:骨料的最大粒径越大、总比表面积越小,拌合物流动性大;卵石比碎石的流动性大。(5)外加剂外加剂能使混凝土拌合物在不增加水泥用量的条件下,获得良好的和易性。不仅流动性显著增加,而且还有效的改善拌合物的粘聚性和保水性。(6)时间和温度环境温度升高,水分蒸发及水化反应加快,相应坍落度下降。搅拌后搁置的时间越长,水分蒸发,则坍落度下降。1改善和易性措施(1)尽可能降低砂率(采用合理砂率);(2)改善砂、石(特别是石子)的级配;(3)尽量采用适宜的砂、石;(4)当混凝土拌合物坍落度太小时,维持水灰比不变,适当增加水泥和水的用量;当拌合物坍落度太大,但粘聚性良好时,可保持砂率不变,适当增加砂、石。混凝土表面起粉的原因分析及措施 一、混凝土表面起粉的原因分析及措施 1、 混凝土表面起粉的原因 是混凝土表层结构疏松,强度偏低。导致混凝土表层结构疏松、强度偏低的主要原因有两方面:1、混凝土表层的水灰比大于混凝土内部,表层水化 .一、混凝土表面起粉的原因分析及措施1、混凝土表面起粉的原因是混凝土表层结构疏松,强度偏低。导致混凝土表层结构疏松、强度偏低的主要原因有两方面:(1)、混凝土表层的水灰比大于混凝土部,表层水化产物之间搭接不致密,空隙率大;(2)、混凝土养护不当,施工早期水分散失过快,形成大量的水孔,表层的水泥得不到足够的水分进行水化。2、检测混凝土表层中水泥的水化程度,可帮助判别“起粉”的原因。表层水泥水化程度较高主要是由于泌水所致,表层水化程度较低则主要是施工养护不当所致。3、影响混凝土表层水灰比的因素3.1混凝土的配合比3.1.1混凝土的水灰比越大,水泥凝结硬化的时间越长,自由水越多,水与水泥分离的时间越长,混凝土越容易泌水。3.2.2混凝土中外加剂掺量过多,或者缓凝组分掺量过多,会造成新拌混凝土的大量泌水和沉析,大量的自由水泌出混凝土表面,影响水泥的凝结硬化,混凝土保水性能下降,导致严重泌水。3.2混凝土的组成材料3.2.1砂石集料含泥较多时,会严重影响水泥的早期水化,黏土中的黏粒会包裹水泥颗粒,延缓及阻碍水泥的水化及混凝土的凝结,从而加剧了混凝土的泌水3.2.2砂的细度模数越大,砂越粗,越易造成混凝土泌水,尤其是0.315mm以下及2.5mm以上的颗粒含量对泌水影响较大:细颗粒越少、粗颗粒越多,混凝土越易泌水3.2.3矿物掺和料的颗粒发布同样也影响着混凝土的泌水性能,若矿物掺和物的细颗粒含量少、粗颗粒含量多,则易造成混凝土的泌水。用磨细矿渣作掺和料,因配合比中水泥用量减少,矿渣的水化速度较慢,且矿渣玻璃体保水性能较差,往往会加大混凝土的泌水量。3.2.4粉煤灰过粗,微细集料效应减弱,会使混凝土泌水量增大。3.2.5水泥的凝结时间、细度、比表面积与颗粒分布都会影响混凝土的泌水性能。水泥的凝结时间越长,所配制的混凝土凝结时间越长,且凝结时间的延长幅度比水泥净浆成倍的增长,在混凝土静置、凝结硬化之前,水泥颗粒沉降的时间越长,混凝土越易泌水;水泥的细度越粗、比表面积越小、颗粒分布中细颗粒(5um)含量越少,早期水泥水化量越少,较少的水化产物不足以封堵混凝土中的毛细孔,致使部水分容易自下而上运动,混凝土泌水越严重。3.3施工与养护3.3.1施工过程中的过振并不是将混凝土中密度较小的掺和料或混合材振到了混凝土的表面,而是加剧了混凝土的泌水,使混凝土表面的水灰比增大3.3.2当混凝土表层的水泥尚未硬化就洒水养护或表面受到雨水的冲刷时,亦会造成混凝土表层的水灰比增大,3.3.3在混凝土的施工与养护过程中,太阳暴晒或天气非常干燥的时候,表面水分的蒸发大于混凝土的泌水速度,将导致表层水分大量挥发,表层水泥得不到充分的水化,建立不起足够的表面强度而产生起粉现象。3.3.4因此,施工与养护方法应根据不同的气候条件、不同强度等级的混凝土和不同品种的水泥而及时调整,保证混凝土在施工后至建立起足够的强度之前有充分的湿养护而又不出现严重的泌水。4、如何避免混凝土表面出现起粉现象?4.1混凝土本身要具有较好的保水性,防止严重的泌水导致混凝土表层水灰比过大。从配合比及组成材料的选择出发,要注意控制水灰比不宜过大、外加剂不要过掺以及凝结时间要适宜。砂石集料要符合国家质量要求,尤其要注意砂中0.315mm以下的颗粒含量。水泥的凝结时间不宜过长,比表面积不宜过小,颗粒级配不宜过分集中。4.2施工过程要防止振捣过度造成混凝土严重的离析和泌水4.3施工后要注意及时养护,既要防止混凝土表面硬化之前就被雨水冲刷造成混凝土表面水灰比过大,又要防止混凝土中的水分在表层建立起强度之前散失,尤其是掺有粉煤灰或矿渣的混凝土,由于其早期强度较低,表层没有足够多的水化产物来封堵表层大的毛细孔,若不注意早期充分的湿养护,混凝土表层水分散失较快较多,表层水泥得不到充分的水化,亦会导致表层混凝土强度偏低,结构松散。通常,在混凝土接近终凝时,要对混凝土进行二次抹面或压面,使混凝土表层结构更加致密。二、地面起砂的原因分析2.1水泥砂浆拌和物水灰比过大,降低了抹面层的强度。2.2不了解水泥硬化的基本原理,地面压光过早过迟。2.3养护不适当,水泥地面完成后,如果养护天数不够,在干燥环境中水分迅速蒸发,水泥的水化作用就会受到影响致使水泥砂浆脱水而影响强度和抗磨性。此外,地面浇水过早,也会导致大面积脱皮,砂粒外漏,使用后起砂。2.4水泥地面过早使用。水泥地面在尚未达到足够强度就上人进行下道工序,使地面受到破坏,容易起砂。冬季尤其严重2.5冻害。冬季施工未封闭门窗或无供暖设备,造成冻害,致使起砂、脱皮。2.6新抹地面冬季使用不当。冬季在新做的水泥地面房间生火升温,燃烧时产生的二氧化碳气体是有害的,它和水泥砂浆面层接触后,与水泥尚未结晶硬化的氢氧化钙反应,生成碳酸钙。阻碍水泥砂浆水泥水化作用的正常进行,从而显著降低地面面层的强度,常常造成地面起砂2.7原材料不符合要求a、水泥强度低或用过期水泥,受潮与结块水泥,这种水泥活性低,严重降低面层强度和耐磨性能b、砂含泥量大。地面用砂含泥量超过10%,地面面层强度降低20-50%,粘结力差,严重造成地面起砂。C、砂子过细。砂表面积大,拌合时需水量大,水灰比增大,强度降低。三、水泥初凝与终凝时间间隔太短为何容易起砂?水泥地面浇筑完后,应掌握适当的面层压光时间。如果面层压光时间过早,砂浆或混凝土表面会有一层游离水,不利于消除表面孔隙和气泡,会直接影响水泥表面的强度。如果面层压光时间过晚,水泥已经凝结硬化,表面较干,此时压光会破坏水泥表面强度,影响水泥地面的耐磨性,面层也容易起砂。如果水泥表面已终凝硬化,此时还洒水湿润并强行抹压,则会造成该处水泥表面结构破坏、强度降低,很容易导致起砂。因此,水泥地面浇筑完后,要选择适宜的收光时机。应根据混凝土强度等级、温度、湿度等因素,掌握好表面抹压的时机。早了压不实,而且混凝土表面会出现不规则的干缩裂缝;晚了压不平,不出亮光。在初凝以后终凝以前(混凝土表面用手按有凹坑且不粘手以前)对水泥砂浆进行抹压平,这是保证混凝土表面密实、提高混凝土表面强度和防止混凝土表面起砂的重要步骤。在收光次数上不宜超过3次,一般两次即可。而在不利条件下,比如冬季施工水泥地面时,宜一次成型,砂浆应干些。影响混凝土强度的因素一、水泥的强度和水灰比水泥的强度和水灰比是决定混凝土强度的最主要因素。水泥是混凝土中的胶结组分,其强度的大小直接影响混凝土的强度。在配合比相同的条件下,水泥的强度越高,混凝土强度也越高。当采用同一水泥(品种和强度相同)时,混凝土的强度主要决定于水灰比;在混凝土能充分密实的情况下,水灰比愈大,水泥石中的孔隙愈多,强度愈低,与骨料粘结力也愈小,混凝土的强度就愈低。反之,水灰比愈小,混凝土的强度愈高。二、骨料的影响骨料的表面状况影响水泥石与骨料的粘结,从而影响混凝土的强度。碎石表面粗糙,粘结力较大;卵石表面光滑,粘结力较小。因此,在配合比相同的条件下,碎石混凝土的强度比卵石混凝土的强度高。骨料的最大粒径对混凝土的强度也有影响,骨料的最大粒径愈大,混凝土的强度愈小。三、外加剂和掺合料在混凝土中掺入外加剂,可使混凝土获得早强和高强性能,混凝土中掺入早强剂,可显著提高早期强度;掺入减水剂可大幅度减少拌合用水量,在较低的水灰比下,混凝土仍能较好地成型密实,获得很高的28d强度。在混凝土中加入掺合料,可提高水泥石的密实度,改善水泥石与骨料的界面粘结强度,提高混凝土的长期强度。因此,在混凝土中掺入高效减水剂和掺合料是制备高强和高性能混凝土必需的技术措施。四、养护的温度和湿度混凝土的硬化是水泥水化和凝结硬化的结果。养护温度对水泥的水化速度有显著的影响,养护温度高,水泥的初期水化速度快,混凝土早期强度高。湿度大能保证水泥正常水化所需水分,有利于强度的增长。五、龄期混凝土在正常养护条件下,其强度将随着龄期的增加而增长。最初的714d,强度增长较快,28d以后增长缓慢,龄期延续很长,混凝土的强度仍有所增加.聚羧酸减水剂聚羧酸盐系高效减水剂与萘系高效减水剂相比,其突出优点主要表现为: 1、优良的保塑性能,能够保持混凝土坍落度在12h不损失; 2、掺量低,减水率高,其最高减水率可达40; 3、对混凝土的早强及增强效果明显高于其它类型的高效减水剂; 4、能够提高抗压、抗弯和抗拉强度; 5,大幅提高混凝土耐久性,降低混凝土碱-骨料反应,提高混凝土的抗冻融能力 6、优异的保水性能,掺用该产品后的混凝土,比基础产品混凝土 泌水明显减少,且无离析;更容易实现施工作业; 7、降低混凝土的单方成本; 8、合成中不使用甲醛,对环境不造成污染,属于绿色环保产品。13 / 13
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!