测井电缆张紧装置文献综述1

上传人:无*** 文档编号:82767268 上传时间:2022-04-29 格式:DOC 页数:16 大小:169.50KB
返回 下载 相关 举报
测井电缆张紧装置文献综述1_第1页
第1页 / 共16页
测井电缆张紧装置文献综述1_第2页
第2页 / 共16页
测井电缆张紧装置文献综述1_第3页
第3页 / 共16页
点击查看更多>>
资源描述
word中国石油大学华东毕业设计论文测井电缆X紧装置伺服系统设计学生某某:周忍学 号:08041532 专业班级:机自08-5指导教师:X金中2012年3月16日目 录第1章 前言111国内外现状1 12 研究目的1 13研究意义 1第2章 电缆X紧装置伺服系统分析介绍2 21 电缆受力分析 2 22 X紧装置介绍2 23伺服系统分析2 231 伺服系统开展概况 3 232 制动力矩的调节控制 4第3章 结论7参考文献9第1章 前 言111.1 国内外X紧装置伺服系统的现状测井是通过绝缘电缆将井下仪器或电极系,下放到钻孔中进展各种地球物理测,量并随钻孔深度进展模拟的图形显示或数字记录,最后通过数据处理和解释,达到解决各种地质问题的目的的测量方法。在钻到设计井深深度后都必须进展测井,又称完井电测,以获得各种石油地质与工程技术资料,作为完井和开发油田的原始资料。深度是测井资料中的一项重要数据。但由于目前使用的数控测井仪深度系统仍存在不少问题,使得实际测井中常产生深度误差。原因是多方面的,诸如电缆与测量轮之间因吻合不好而产生打滑,使得深度测量出现一次性误差;测量轮的周长由于磨损等原因发生变化,从而引起深度测量累积性误差;由于井下仪器遇卡和电缆跳动等原因,使测量轮来回转动引起测量误差;电缆在井内受自重、浮力、摩擦力、泥浆压力与温度变化等因素影响,导致电缆拉伸引起测量误差。传统测井电缆的深度标定是采用标准井法完成的。标准井内下有套管,首先,对套管进展深度标定,每一套管接箍都有一个标准深度,形成标准深度的套管井。在此根底上,把测井电缆下放到井内,以每小时2500至3000米的速度上提电缆进展磁定位深度测井,在测井的同时,在地面上对运动的测井电缆每隔25米注上一个磁记号,并连续将整盘电缆全部注磁完毕,即完成一套电缆的深度标定。传统测井电缆的深度标定方法需要建一口标准井,而标定过程复杂、费时。传统测井电缆深度记号标定装置安装示意图如下传统测井电缆的深度标定方法复杂、费时。为了克制用标准井标定测井电缆的缺点采用滚筒模拟标准井对电缆进展标定。用滚筒模拟标准井在地面标定测井电缆时,必须使电缆保持在标准井中对应深度的X力。电缆X力只能施加于滚筒,不能直接施加于电缆,X力的变化还必须随电缆的长度变化而变化。因此,需要研制一套模拟电缆在标准井中由于自重所产生的X力的装置与其调节控制系统。测井电缆是测井获取地层信息过程中重要的配套设备,在测井过程中起到地面控制系统与井下仪器之间的信号传输与下放、提升井下仪器和标示所测地层信息深度位置的作用。电缆通常是不能承受很大拉力的,所以X紧装置是电缆传送中不可缺少的重要组成局部,它的主要性能是:1.保证足够的X紧力以与驱动装置依靠摩擦力传动所必须传递的摩擦牵引力,防止电缆打滑。2.补偿塑性变形与过渡工况时电缆伸长量的变化。由于负载变化会引起电缆长度发生变化,X紧力有变小趋势,需要X紧装置来维持电缆传送正常运行所需的最小X紧力。测井电缆机械抗拉强度一般为50801N,在测井过程中,由于电缆上提速度较快,当井下仪器遇卡时, 电缆X力突然变大,操作人员往往来不与采取措施,电缆就被瞬间拉断,造成仪器掉入井中和电缆报废事故。这不但妨碍了安全生产,同时会带来严重经济损失。为此我们需要设计一伺服系统来控制X紧装置从而达到保护电缆的目的。第2章 电缆X紧装置伺服系统分析介绍电缆自重、下井仪器的重量与其在泥浆中的浮力(1) 电缆自重 设单位长度电缆的重量为,电缆长度为,如此电缆的自重为 2-1 2电缆在泥浆中的浮力 电缆在井内处于泥浆之中,受到泥浆的浮力作用,其浮力等于电缆所排泥浆的重量,即 2-2 式中,为泥浆的单位体积重量;为电缆的截面积。(3) 仪器重量 电缆终端悬挂着的井下仪器在泥浆中的重量为 2-3式中,为仪器在空气中的重量,为仪器的体积。电缆在井内移动时所受的阻力 1泥浆粘附力 这种粘附力由周围泥浆粒子之间的抗剪切强度产生,可表示为 2-4 式中,加号表示电缆上提,减号表示电缆下放;为电缆直径;为泥浆中的动态剪切强度;为泥浆的塑性粘度,它取决于泥浆的性质;为电缆在井内的移动速度;为单位长度电缆所受到的泥浆粘附力。 2附加摩擦力 电缆在井内移动时可能与井壁接触,由此将产生附加摩擦力,它与电缆在井壁上的摩擦系数、井眼的倾斜角与电缆的重量等参数成正比,并与电缆在井内的移动速度有关。实际上,在井内各段电缆的摩擦系数是不同的,取决于该段井壁的状况,如岩石的性质、泥饼的厚度以与不同井斜状态下电缆在井壁上所受的压力变化等,因此难以用简单的式子表示。通常可以通过实际测试和统计找出其与这些因素之间的关系。和均为电缆在井内移动时受到的阻力,对电缆所产生的负荷为 2-5式中,为单位长度电缆所受的阻力。 同理,下井仪器在井内移动时也受到泥浆粘附力和来自井壁的摩擦力。对电缆产生的负荷为根据上述分析可知,测井时电缆在井口所受到的拉力为 2-6由上述知,悬挂在空气中并考虑来自泥浆和井壁的阻力、泥浆的浮力等因素,在井下作用于电缆上的实际平均X力为 2-7比拟是2-6和式2-7,可得 2-8 实现电缆由自重所产生X力的模拟,采用连续制动的原理。能够实现这一功能的技术有:水制动、电磁涡流制动和气控盘式制动。在此选用伊顿WCB辅助制动器。伊顿辅助制动力矩是在压缩空气作用下,压紧盘组件压紧动摩擦盘所产生的摩擦力而形成的。其制动转矩为: 2-9 式中,Me为盘式制动在p0 压力下的制动扭矩;p0为盘刹气缸内的压力;Mr为 pr 为0.55 MPa时产生的扭矩;pp为压力损失。由公式2-9可以看出,WCB辅助制动制动力矩与制动轴的转速无关,仅与制动气缸的气压有关,且呈线性关系。易于实现制动力矩的调节与控制。伊顿辅助制动在制动状态下,摩擦盘长时间摩擦产生大量热量必须由冷却水腔中的冷却水流带走。如果冷却不充分,将严重影响制动性能。因此,伊顿制动配套和使用的关键是制动必须能够得到充分冷却。伊顿WCB辅助制动是国内引进的美国技术,已经很好的解决了摩擦盘和摩擦片的寿命问题。在石油钻机上的应用结果明确,其寿命达到三年,而且制动力矩稳定。伊顿WCB辅助制动是气控制动最典型的代表,伊顿制动具有低速制动性能好,结构紧凑、体积小、质量轻等特点。同时,气动控制方式安全性高, 适用于易燃易爆的工作环境。WCB制动器负荷试验曲线图伺服系统Servomechanism; servo-system :实现输出变量准确地跟随或复现输入变量的控制系统。 包含功率放大和反应,使得输出变量的值严密地响应输入量值的一种自动控制系统。 伺服系统(servomechanism)是是使物体的位置、方位、状态等输出被控量能够跟随输入目标或给定值的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进展放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。伺服系统是用来准确地跟随或复现某个过程的反应控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量系统的输出量是机械位移或位移速度、加速度的反应控制系统。其作用是使输出的机械位移或转角准确地跟踪输入的位移或转角。一个现代伺服系统的设计包含了机械设计、电机控制、电力电子、伺服控制、运动控制、程序设计、网络通讯协议、噪声抑制、实际应用等技术与经验,其核心技术在于整合微电子与电力电子技术实现伺服控制技术。伺服系统开展概况伺服系统是自动控制系统中的一类。它是伴随电的应用而开展起来的,最早出现于本世纪初。1934年第一次提出来伺服机构Servomechanism)这个词,随着自动控制理论的开展,到本世纪中期,伺服系统的理论与实践均趋于成熟,并得到广泛应用。近几十年来在新技术革命的推动下,特别是伴随着微电子技术和计算机技术的飞速进步,伺服技术更是如虎添翼突飞猛进。伺服系统方块图从系统组成元件的性质看,有电气伺服系统,它的全部元器件由电器元件组成;有全部由液压元件组成的液压伺服系统;有不少两者相结合的电气-液压伺服系统、电气-气动伺服系统,从控制方式看,伺服系统不包括单纯的开环控制,还有闭环控制系统,开环-闭环控制系统。伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。最根本的伺服系统包括伺服执行元件电机、液压缸等、反应元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构,PLC,专门的运动控制卡,工控机+PCI卡,以便于给伺服驱动器发送指令。 从控制方式看,伺服系统不包括单纯的开环控制,还有闭环控制系统,开环闭环控制系统伺服系统根本控制方式举例2.3.2 制动力矩的调节控制a. 制动力矩的调节采用电控气动闸阀调节制动汽缸的气压实现。b. 制动力矩的控制电控气动压力调节阀的调节动作以电缆长度信号为触发,通过计算机程序控制。控制原理图:第3章 结 论测井电缆在测井施工中占有重要地位,其不仅负责输送各种下井仪器,承受仪器重量与自身负荷,还是下井仪器和地面设备相互联系的信息通道。测井电缆机械抗拉强度一般为5080KN,在测井过程中,由于电缆上提速度较快,当井下仪器遇卡时,电缆X力突然变大,操作人员往往来不与采取措施,电缆就被瞬间拉断,造成仪器掉入井中和电缆报废事故。这不但妨碍了安全生产,同时会带来严重经济损失。而X紧装置对电缆的正常功能的发挥起至关重要的作用。同时电缆的X力只能用计算机来实现控制,对于测井电缆X紧装置伺服系统设计,可能的控制方法就是随电缆的深度变化来进展控制。采用伺服系统控制,可以防止电缆受力过大造成电缆损坏,对提高测井时效,保证测井原始资料质量与降低测井本钱有着重要的意义。参考文献 1 薛辉,何爱华,姚辰明,时敏.测井电缆安全自动保护系统.安全、健康和环境,2003,35:8-9. 2 林其伟,冯桂.测井电缆的拉伸校正.江汉石油学院学报,1994,16:37-39. 3 原宏壮,陆大卫,X辛耘,X建孟.测井技术新进展综述.地球物理学进展,2005,203:786-795 4 王斌.浅析测井电缆的现场应用与维护.中国高新技术企业,2008,16:58-64 5 姚远,宋丽.延长测井电缆使用寿命的方法.中小企业管理与科技,2010,10:232-233
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!