五年级下册数学专项训练奥数第十二讲容斥原理全国版 (含答案

上传人:无*** 文档编号:74059257 上传时间:2022-04-12 格式:DOC 页数:6 大小:69KB
返回 下载 相关 举报
五年级下册数学专项训练奥数第十二讲容斥原理全国版 (含答案_第1页
第1页 / 共6页
五年级下册数学专项训练奥数第十二讲容斥原理全国版 (含答案_第2页
第2页 / 共6页
五年级下册数学专项训练奥数第十二讲容斥原理全国版 (含答案_第3页
第3页 / 共6页
点击查看更多>>
资源描述
第十二讲 容斥原埋家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑.如:A=五(1)班全体同学.我们称一些事物的全体为一个集合.A五(1)班全体同学就是一个集合。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 例1 B全体自然数=1,2,3,4,是一个具体有无限多个元素的集合。例2 C=在1,2,3,100中能被3整除的数(3,6,9,12,99是一个具有有限多个元素的集合。集合通常用大写的英文字母A、B、C、表示.构成这个集合的事物称为这个集合的元素.如上面例子中五(1)班的每一位同学均是集合A的一个元素.又如在例1中任何一个自然数都是集合B的元素.像集合B这种含有无限多个元素的集合称为无限集.像集合C这样含有有限多个元素的集合称为有限集.有限集合所含元素的个数常用符号|A|、|B|、|C|、表示。记号AB表示所有属于集合A或属于集合B的元素所组成的集合.就是右边示意图中两个圆所覆盖的部分.集合AB叫做集合A与集合B的并集.“”读作“并”,“AB”读作“A并B”。例3 设集合A=1,2,3,4,集合B=2,4,6,8,则AB=1,2,3,4,6,8.元素2、4在集合A、B中都有,在并集中只写一个。记号AB表示所有既属于集合A也属于集合B中的元素的全体.就是上页图中阴影部分所表示的集合.即是由集合A、B的公共元素所组成的集合.它称为集合A、B的交集.符号“”读作“交”,“AB”读作“A交B”.如例3中的集合A、B,则AB=2,4。下面再举例介绍补集的概念。例4 设集合I=1,3,5,7,9,集合A=3,5,7。补集(或余集),如图中阴影部分表示的集合(整个长方形表示集合I).对于两个没有公共元素的集合A和B,显然有|AB|=|A|+|B|。例如,A=1,2,100,B=101,则所以|AB|1011001=|A|B|。如果集合A与B有公共元素,例如A1,2,100,B90,91,101,则AB(90,91,100,AB=1,2,101.此时,|AB|与|A|+|B|有什么关系呢?在这个例中,|AB|=101,|A|B|10012=112。所以|AB|=|A|+|B|-11我们注意到,11恰为AB的元素个数.这是合理的,因为在求|AB|时,90,91,100这11个数各被计入一次,而在求|A|B|时,这11个数各被计入两次(即多算了一次),并且这11个数组成的集合恰为AB.因此得到|AB|=|A|+|B|-|AB|,(1)这就是关于两个集合的容斥原理:集合A与B的并的元素个数,等于集合A的元素个数与集合B的元素个数的和,减去集合A与B的交的元素个数。(1)是容斥原理的第一个公式.我们还可以用右图来说明.如图我们用N1、N2、N3分别表示AB中互不重叠的部分的元素个数。可见:|A|=N1N3,|B|=N2N3,|AB|=N3.因此|AB|=N1N2N3(N1N3)+(N2N3)-N3=|A|+|B|-|AB|。我们知道,当集合A与B没有公共元素时,有|AB|A|+|B|.实际上这是公式(1)的特殊情形,因为此时例5 桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10平方厘米.则这两张圆纸片覆盖桌面的面积由容斥原理的公式(1)可以算出为:AB=3020-1040(平方厘米)。例6 求在1至100的自然数中能被3或7整除的数的个数。分析 解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到解:设A=在1100的自然数中能被3整除的数,B在1100的自然数中能被7整除的数,则AB=在1100的自然数中能被21整除的数。1003331,A33。1007142,B=14。10021416,AB=4。由容斥原理的公式(1):AB3314-4=43。答:在1100的自然数中能被3或7整除的数有43个。例7 求在1100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析 如果在1100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。解:设A在1100的自然数中5的倍数的数,B=在1100的自然数中6的倍数的数,数.为此先求AB。10050=20,A=20又1006164,B=1610030310,AB=3,AB=A+B-AB=2016-333。答:在1100的自然数中既不是5的倍数又不是6的倍数的数共67个。我们也可以把公式(1)用于求几何图形的面积.这时,A和B是平面上的两个点集(即点的集合),都是几何图形.A,B,分别表示A的面积,B的面积,。例8 设下面图中正方形的边长为1厘米,半圆均以正方形的边为直径,求图中阴影部分的面积。分析 如图,四个直径为1厘米的半圆不但盖住了正方形,还有四个重叠部分.这正好是要求的阴影部分的面积.或者,用A表示上、下两个半圆,用B表示左、右两个半圆,则AB为边长为1厘米的正方形,AB为图中阴影部分.由(1)可得AB=A+B-AB,因此可求出阴影部分的面积。解法1:大正方形面积=4个直径为1厘米的半圆面积-阴影图形面积-110.57(平方厘米)。上页图(a)中阴影面积=0.57(平方厘米)。答:阴影面积为0.57平方厘米。上面的例子是把一组事物按两种不同的性质来分类后,求具有其中一种性质的元素个数问题.如果把一组事物按三种不同性质来分类后,求具有其中一种性质的元素个数的公式该是什么样的呢?我们仍用图形来说明它具有与公式(1)类似的公式:ABC=ABC-AB-AC-BCABC, (2)其中ABC=A(BC),ABC=A(BC).图中三个圆A、B、C分别表示具有三种不同性质的集合,并如图用M1、M2、M3、M7表示由三个圆形成的内部互不重叠的部分所含元素的个数,可见:ABCM1M2+M7(M1M4M6M7)+(M2M4M5M7)+(M3M5M6M7)-(M4+M7)+(M5+M7)+(M6M7)M7ABC-AB-BC-AC+ABC,即公式(2)成立。事实上这个规律还可推广到按多种性质来分类的情形.设集合M中的每个元素至少具有t种性质中的一种,用n1表示各个具有1种性质的集合中的元素个数的和,n2表示各个具有2种性质的集合中元素个数的和,nt表示具有t种性质的集合中元素的个数,则集合M中元素的个数m为:m=n1-n2n3-n4+nt最后一项当t为偶数时取“-”号,否则取“”号。例9 某校有学生960人,其中510人订阅“中国少年报”,330人订阅“少年文艺”,120人订阅“中小学数学教学报”;其中有270人订阅两种报刊,有58人订阅三种报刊.问这个学校中没有订阅任何报刊的学生有多少人?解:设A订“中国少年报”的学生,B=订“少年文艺”的学生,C=订“中小学数学教学报”的学生,I=全校学生,=212(人)。答:全校有212名学生没订阅任何报刊。解:如右图,设这次竞赛共有k道题,用集合A、B分别表示甲、乙答错的题目.图中字母a、b、c、d分别表示集合A、B在全部题目作成的集合I中形成的各个无重复部分的元素个数,可见d为问题所求.依题意列方程:注意到a、b、c、d均表示题目的道数,应为自然数或零,因此k为12的倍数:12、24、.k=12,b1,c2,a=1,d=12-(abc)=12-(121)=8(道)。答:甲、乙两人都对的题共8道。习题十二1. 某班有50人,会游泳的有27人,会体操的有18人,都不会的有15人.问既会游泳又会体操的有多少人?2. 在11000这1000个自然数中,不能被2、3、5中任何一个数整除的数有多少个?3. 五环图中每一个环内径为4厘米,外径为5厘米.其中两两相交的小曲边四边形(图中阴影部分)的面积相等.已知五个圆环盖住的总面积是122.5平方厘米.求每个小曲边四边形的面积。4. 某班全体学生进行短跑、游泳和篮球三项测验,有4个学生这三项均未达到优秀,其余每人至少一项达到优秀,这部分学生达到优秀的项目及人数如下表:问这个班有多少名学生?5有100位学生回答A、B两题.A、B两题都没回答对的有10人,有75人答对A题,83人答对B题,问有多少人A、B两题都答对?第 6 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!