资源描述
楚水实验学校高一数学备课组数列通项数列通项一、常用数列一、常用数列通项通项1,2,3,4, 1,1,3,5,7,9,3,5,7,9,11,2,4,6,8,10,0,2,4,6,8,2,4,8,16,32,1,4,9,16,25,1,1,1,1,1,1,1,1,1,1,,51,41,31,21a n = na n = 2n 1a n = 2n + 1a n = 2n a n = 2 ( n 1 ) a n = 2 n a n = n 2 a n = ( 1 ) n1 a n = ( 1 ) n nan1 数列数列通项通项9,99,999,9999,99999,2,22,222,2222,22222,1,22,333,4444,55555,2,3,10,15,26,35,,871 ,651 ,431 ,211222 ,1135,924,715,58, 1 二、观察法求通项:二、观察法求通项:nnann2)12()1(121 12)2()1( nnnann110 nna)110(92 nna)110(9 nnna12)1( nnna三、特殊数列的通项:三、特殊数列的通项:等差数列:等差数列:_ _等比数列:等比数列:_ _此法的前提:此法的前提:_a n = a 1 + ( n 1 ) da n = a m + ( n m ) d a n = a m q n m a n = a 1 q n 1 ( a 1、q 0 )是否能判断此数列是等差数列是否能判断此数列是等差数列还是等比数列还是等比数列公式法求通项:公式法求通项:特征:特征:_;公式:;公式:_说明:说明:1) 单由单由 S n S n 1 = a n 求求 a n,则有,则有 n _; 2) 由由 S n S n 1 = a n 求求 a n, 若若 n = 1 时时,由由an有有 _,则,则 a n = _ 3) 由由 S n S n 1 = a n 求求 a n,若,若 n = 1 时时,由由an有有 _,则,则 a n = _已知已知 S n ,求,求 a n 2111nSSnSannn 2a 1 = S 1S n S n 1a 1 S 1 2111nSSnSnn1、已知数列、已知数列 a n 的前的前 n 项和为项和为 S n = 3n 2 + 2n,求,求 a n解:当解:当 n 2 时,时,a n = S n S n 1= 6n 1当当 n = 1 时,时,a 1 = S 1 = 5又由又由 a n = 6n 1得得a1=52、已知数列、已知数列 a n 的前的前 n 项和为项和为 S n = 3 n + 1,求,求 a n解:当解:当 n 2 时,时,a n = S n S n 1= 3 n 3 n 1= 3 n 1 ( 3 1 )= 23 n 1 当当 n = 1 时,时,a 1 = S 1 = 4故故 a n = 232141nnn故故 a n = 6n 1又由又由 a n = 23 n 1 得得23 1 1 =2 a1应用定义解决问题:应用定义解决问题:例:已知数列例:已知数列an中,中, a1=2,an-an-1=2, (n2)求)求an变变1:已知数列:已知数列an中,中, a1=2,an-an-1=n, (n2)求)求an变变2:已知数列:已知数列an中,中, a1=2,an-an-1=2n, (n2)求)求an归纳:在数列归纳:在数列an中,已知中,已知a1,an-an-1=f(n), (n2)(其中其中f(n)可求和可求和 )求求an变:已知数列变:已知数列an中,中, a1=2,an-2an-1=2, (n2)求)求an变:已知数列变:已知数列an中,中, a1=2,an-2an-1=2n, (n2)求)求an
展开阅读全文