第六章空三加密

上传人:沈*** 文档编号:73231983 上传时间:2022-04-11 格式:DOC 页数:51 大小:9.47MB
返回 下载 相关 举报
第六章空三加密_第1页
第1页 / 共51页
第六章空三加密_第2页
第2页 / 共51页
第六章空三加密_第3页
第3页 / 共51页
点击查看更多>>
资源描述
.第六章 空三加密空三加密即解析空中三角测量,指的是用摄影测量解析法确定区域内所有影像的外方位元素。空三加密的传统做法是利用少量控制点的像方和物方坐标,解求出未知点的坐标,使得每个模型中的已知点都增加四个以上,然后利用这些已知点解求所有影像的外方位元素。这中间包含一个已知点由少到多的过程,所以形象地称之为空三加密。概括地讲,空三加密的目的可以分为两个方面:第一是用于地形测图的摄影测量加密;第二是高精度摄影测量加密,用于各种不同的目的(张剑清,2003)。本章以MapMatrix系统空三加密相关模块AATMatrix的操作流程为例介绍空三加密的主要流程,包括单像空间后方交会、GPS辅助空三、GPS/IMU联合平差、光束法区域网平差等内容。作为补充和比较,又增加介绍了LPS空三的过程。6.1 实习内容和要求本章的实习内容主要是空中三角测量,要求同学们能够掌握控制三角测量和光束法平差的原理方法,熟悉用AATMatrix和LPS两个软件进行空三加密的流程。6.2 AATMatrix空三加密6.2.1 原理和操作流程概述利用测区中影像连接点(加密点)的像点坐标和少量的已知像点坐标及其大地坐标的地面控制点,通过平差计算,求解连接点的大地坐标与影像的外方位元素,称为区域网空中三角测量。区域网空中三角测量提供的平差结果是后续的一系列摄影测量处理与应用的基础。区域网空中三角测量按平差单元可分为航带法、独立模型法和光束法,其中光束法理论最严密、解算精度最高。成为空三的主流方法。光束法区域网平差的基本思想是,以每张像片为单元,区域内每张像片的控制点、加密点都列立共线条件方程式,建立全区域统一的误差方程,统一平差解算,整体解求区域内每张像片的6个外方位元素及所有加密点的地面坐标。AATMatrix单个测区工作流程图如图6-1所示:精品.图6-1 AATMatrix空三加密流程图一 新建测区:1. 新建一个测区或打开一个已存在的测区二 测区参数设置:1. 测区参数设置,包括摄影比例尺,测区编号,以及相机类型等2. 相机参数的导入,注意相机文件的路径3. 影像的导入,设置航带数及添加影像并且对像素大小,相机参数,相机是否反转等进行设置4. 控制点导入,注意PATB不支持带字母的控制点格式并且注意路径精品.(或GPS/IMU参数的导人,注意线元素和角元素的顺序关系)三 操作步骤:5. 内定向,包括手工和自动量测两种方式6. 航带连接,通过相邻相邻航带间的航带连接点确定航带间的连接关系,为后期航带间转点提供初值(如果是GPS辅助空三,不需要做航带连接)7. 自动提取,通过相对定向确定航带内相临影像之间相对位置关系,以及由公共连接点来确定相对定向模型。8. 自动选点,按照设定的分布方式,删除误差比较大的点保留精度较好的点。9. 交互编辑,添加控制点检测并编辑粗差点,并通过少量地面控制点的坐标来解算待定点的坐标。10. 生成加密点,解算出待定点坐标。,并输出成果。6.2.2 光束法区域网平差实验空中三角测量是摄影测量生产中的关键步骤,它利用少量的地面控制点来计算一个测区中所有影像的外方位元素和所有加密点的地面坐标。是后续的一系列摄影测量处理与应用的基础。VirtuoZo中空三采用光束法。下面以MapMatrix系统的自动空三量测模块AATMatrix为例说明光束法空中三角测量的实现过程。1、建立测区, 设置测区基本参数单击任务栏中测区下的新建 (或测区主界面菜单中的 文件新建),可以创建新测区。此时弹出测区向导对话框。然后分两步进行,如图6-2和图6-3所示。第一步:基本设置。该对话框第一栏中的文本框自上而下依次为:测区名称,测区目录,摄影比例尺和测区编号。图6-2测区名称:输入新建测区的名称。测区目录:可以直接输入,也可单击右边的浏览按钮,选择一个已经存在的目录。摄影比例尺:输入测区的摄影比例尺。测区编号: 不同的编号为后期的测区合并做准备精品.第二步:设置相机类型以及限差。首先在相机类型的下拉框中选择普通相机,RMK相机或数码量测相机三种类型。其次设置内定向限差,相对定向限差和模型连接限差。系统为它们设定了缺省值,一般在建立新测区时用户无需进行设置。这三项设置在后面的内定向检查和自动转点时起着比较重要的作用。图6-3以上两步完成后即新建了一个测区。注意:以上参数(除测区名称和目录外)今后可以在设置一栏下的测区参数中修改。精品.2. 建立相机文件建立相机文件或修改相机参数,可以在主界面下单击任务栏中设置下的相机参数(或菜单项设置相机)打开相机参数的设置窗口。该窗口共分为五个部分,现分别说明如下。a 界面顶部工具栏如下图6-4所示。其上按钮功能依次是:打开已有相机文件,保存相机文件更改,另存相机文件,新建相机文件。图6-4b 界面左边显示了三种框标的分布状态,可选择不同按钮进行切换(如图6-5所示)。图6-5相机的框标分布主要有三种情况:4个角框标,4个边框标和8个框标(边角框标)。系统提供了三个相应的选项供用户选择: 4 corner masks(4个角框标)。 4 border masks(4个边框标)。 8 masks(8个框标)。以4个角框标为例:当用户选中此项时,右方的四个角上的文本框中的数字即可编辑右边列表框中的框标名也将与之相对应,单击列表框中的任一栏(x表示横坐标、y表示纵坐标。坐标单位为:mm)即进入编辑状态,可填入相应的框标坐标值。最后一列(enable)用于设定该框标是否参与内定向:“1”表示参与内定向。“0”表示不参与内定向,这种设定用在某个框标不清晰或者根本没有时的特殊情形。c 界面左下三个编辑框(如图6-6)用于输入像主点坐标和焦距。精品.图6-6像主点X0(毫米):输入相应的像主点横坐标值。像主点Y0(毫米):输入相应的像主点纵坐标值。焦距:输入相机焦距参数。d 界面右上列表框用于编辑框标参数(图6-7)。图6-7e 若存在畸变差的改正,用户可选中选项栏“畸变改正参数”,此时下方的编辑栏即可编辑,用户可在此处输入相应的畸变差改正参数。并可用添加、删除选项进行增减参数。如图6-8所示。图6-83、建立测区影像列表:单击按钮 可新建一条航带,双击航带可选中该航带,并在右边主窗口出现影像列表框(如图6-9所示)。单击 打开文件浏览窗口,到影像所在目录下选择所要添加的影像即可导入。同时支持直接从windows资源管理器中拖拽影像到影像列表框中。精品.影像和相机参数的路径并且对像素大小,相机是否反转等进行设置图6-94、输入控制点:单击任务栏中设置下的控制点 (或菜单项设置控制点),在测区主窗口中出现如图6-10所示的界面,用于输入外业控制点。图 6-10点击图标,导入控制点文件。或者在工具栏的编辑框中,按照 点名、X、Y、Z、,平面FLAG, 高程FLAG的次序输入控制点信息。注意:如果用户是导入控制点文件,控制点问价的格式是:首行为控制点数目;从第二行开始,都是按照点名、X、Y、Z、,平面FLAG, 高程FLAG的次序排列,如果原始控制点文件不是这个格式,请改成该格式。如图6-11所示。设置完毕之后,才能够正确导入。平面FLAG标识该点是否为平面控制点,如果标识码为0,则该点不是平面控制点。高程FLAG标识该点是否为高程控制点,如果标识码为0,则该点不是高程控制点。如果两个FLAG都不为0,说明该点是平面高程控制点。精品.图 6-115、内定向:内定向是数字摄影测量的第一步。这是因为数字影像是以“扫描坐标系O-I-J”为准,即象素的位置是由它所在的行号I和列号J来确定的,它与像片本身的像坐标系o-x-y是不一致的。一般说来,数字化时影像的扫描方向应该大致平行于像片的x轴,这对于以后的处理(特别是核线排列)是十分有利的。因此扫描坐标系的I轴和像坐标系的x轴应大致平行,如图6-12所示。图6-12内定向的目的就是确定扫描坐标系和像片坐标系之间的关系以及消除数字影像可能存在的变形。数字影像的变形主要是在影像数字化过程中产生的,而且主要是仿射变形。因此扫描坐标系和像片坐标系之间的关系可以用下述关系式来表示:精品.其中是采样间隔(或称为象素的大小和扫描分辨率,如25)。因此内定向的本质可以归结为确定上述方程中的六个仿射变换系数,为了求解这些参数,必须观测4(或8)个框标的扫描坐标和已知框标的像片坐标,进行平差计算。点击快捷图标内定向,进入内定向界面,如图6-13所示。首先逐个点击界面左下方列出的影像,系统会为每张影像进行自动内定向。图6-13自动内定向结束后,可单击按钮 ,系统弹出窗口显示内定向结果报告(如图6-14 )。图6-14在报告中,第二列和第三列显示了影像的x坐标中误差、y坐标中误差。如果最后一列显示is OK ,表示内定向精度符合要求;如果显示 overlimit ,表示该影像内动向精度很差或自动内定向失败,必须人工交互处理。在报告列表中双击任意选择一张影像,对应于该影像的内定向结果将会显示在的内定向编辑界面中,如图6-15 所示。 精品.图6-15编辑界面每一框标显示窗口顶部有一个工具栏。点击图标切换编辑到当前框标。人工调整好一张影像各框标的位置后,单击下一张影像会弹出提示框询问是否保存内定向结果。 6、量测航线间偏移量: 为了在航线间自动转点,程序需要知道航线之间的相互关系,确定航线间的偏移量就是用来确定航线之间的相互关系并且为后期航带间转点提供初值。通常,确定航线之间的相互关系,只需在相邻的航线之间人工量测数个同名点,这些点我们称之为航线间偏移点(Strip Offset点)。在普通航线(航向基本相同)之间和不同的航线组(交叉航线)之间,对航线间偏移点的数量有不同的要求:对于两条普通航线,基本要求为在航线的头尾各量测一个点,当航线比较长时,有时可以在航线中间再均匀的量测一个或多个点。对于不同的航线组,基本要求为在两个航线组(各包含多条航线)的公共区域内,人工至少量测3个偏移点,而且要求这三个点不要分布在一条直线上。单击快捷图标航带连接,系统进入航带连接界面。如图6-16所示。精品.图6-16进入此界面后,单击左方影像列表中的 ,选择相应的上下两条航带,影像列表中将按顺序显示与当前航带对应的航片名,右方的影像显示窗口缺省显示当前选中航带的前面两张航片的全局影像图。在航带影像列表中,使用鼠标左键分别选择上下两条航带将要寻找同名点的对应的航片名,右方的影像显示框将显示选中的航片和与之相邻的下一张航片。分别在显示出的四张影像上寻找相对应的同名点,找出后用鼠标左键选中。单击按钮 ,即进入编辑偏移点界面,其界面如图6-17。图 6-17进入此界面后,用户可选择 的下拉选项调整影像显示的放大率。若选择 ,此时在设为主片的影像上用鼠标左键选中某特征点时,其他的影像将自动匹配到该点处。若该点特征不明显,程序在其他影像上无法自动匹配到该点,此时会给出提示信息,如图6-18所示。图6-18若选择 ,即进入手工对点状态,此时在任何一张影像上单击鼠标左键时,其他影像上的点位不会自动匹配该点,用户可通过放大影像精确调整每张影像上的同名点点位。编辑完成后,保存编辑结果,然后在航带尾部的四张影像上做相同的操作。7、连接点自动提取: 点击快捷图标自动提取进行连接点的自动提取。连接点自动提取包括建立金字塔影像、相对定向、模型连接和航线间转点等步骤。精品.8、自动挑点: 当自动转点完成后,用户就可以进行自动选点,即反复调用PATB平差程序进行平差,并根据平查结果剔除自动转点中的粗差点,最后再根据用户指定的连接点分布方式挑选出精度最高的点保留下来作为加密点。在主界面下点击快捷图标自动选点开始自动选点。此时将弹出如图6-19所示的将连接点参数设置对话框。图6-19在连接点参数设置对话框中,下拉 选项可选择标准点位的个数。在标准点位点数编辑框中输入每一点位中的点数。从图6-1中可以看到,当该模块选择5个点位,点位点数为3时,每张航片上将会有大约1个点,系统缺省值即为此布局,用户可根据实际情况来选择。在选择了连接点布局方式后,系统将自动调用PATB平差程序进行平差(如图6-20所示),并根据结果删除粗差观测值。这种重复过程一般最多持续5次。程序在最后根据平差报告按照用户开始指定的布局方式挑选连接点。精品.图6-20选点结束时,作业窗口提示信息如图6-21所示。精品.图6-219、交互编辑:完成自动转点之后,开始进入空三加密作业,即编辑连接点并进行平差。一般说来,交互编辑的步骤为:A. 在标准点位增加像点。B. 量测控制点。C. 编辑像点网。D. 调用平差程序进行平差计算。 E. 删除或编辑粗差像点。F. 重复D和E直至满足加密要求。在系统主菜单下单击快捷图标交互编辑,启动连接点编辑程序,如图6-22所示。图6-22A. 增加连接点:精品.双击左边影像列表(树型列表)中任一影像名时,窗口右边就会显示选中影像的全局金字塔影像。按下左侧工具条上 按钮,系统处于加点状态,移动鼠标到需要加点处,单击鼠标左键,此时出现如图6-23所示窗口。图6-23该窗口中显示了当前需加点处的原始影像,从而可以更加准确的寻找比较明显的地物点。此时在该处单击鼠标左键,程序开始自动转点,并进入连接点的编辑界面(如图6-24所示)。图6-24在该界面中,点号显示在窗口上方的 中,在上面的窗口中显示了该点6张同名影像(或称该点是一个6度重叠点),在每张影像的下方标注着相应的影像名,精品.代表该影像是基准影像,其他非基准影像的是。 B. 量测控制点在控制点的量测过程中AeroMatrix提供了控制点预测的功能,这对于控制点的量测非常方便,控制点的量测步骤为:1. 首先在测区的四角量测四个控制点。2. 调用PATB平差程序进行平差。3. 平差结束后预测其他控制点的点位。4. 继续量测其他控制点。使用前面介绍的增加连接点和编辑连接点的方法,首先量测测区四角上的四个控制点后,在图9-4所示的工具栏中单击按钮 ,调用PATB平差程序,如图6-25所示。注意:在加点时,一定要点击快捷图标,修改点名为控制点点号。然后点击保存添加结果。 图6-25用户只要单击PATB界面下方的按钮Execute PATB,即可启动平差计算。平差解算结束后,界面如图6-26所示。精品.图6-26单击确定按钮,然后单击PATB界面左下方的按钮Exit,返回连接点编辑的主界面即可完成初步平差。完成初步平差后,单击按钮 ,系统就可以预测控制点,然后返回主界面,此时单击 图标,就会显示如图6-27所示的界面。在界面中可以看到很多蓝色的三角形,它们代表已量测的控制点位,重复第1步中介绍的自动加点过程,完成剩余控制点的量测工作。图6-27C. 像点网的编辑精品.区域网的内部连接性是由测区像点构网强度决定的,而且对最后的加密精度有重要的影响。因此在量测了所有控制点后,最重要的工作就是对像点网的编辑。保证像点构网强度需要遵循的原则1). 要保证测区中每一张影像三度重叠区的上、中、下三个标准点位上必须有连接点。如图6-28所示,影像的中间自上而下有三个绿色的方框,这三个方框中的区域就对应着三个标准点位。图6-28另外,用鼠标单击主界面按钮 ,就会显示图6-27所示的界面,在窗口中可以清楚的看到每一张影像中像点(绿色十字丝)和控制点(绿色三角形加绿色十字丝)的分布,因此很容易确定测区中哪些影像在标准点位上缺少连接点,然后按照第1步介绍的方法在这些影像的对应点位上量测连接点。2). 要保证航线之间的连接强度,位于航线间重叠区域里的像点必须向相邻的航线转测。这一原则在实际作业中有时会比较困难,例如当航线之间覆盖了大片茂密的森林时,无论选点还是转测都会非常困难,但是应该尽量保证这个原则,这个原则只在当航线间重叠区域是大面积落水时才可以例外。D. 调用PAT进行平差解算像点网编辑完毕后,点击快捷图标,运行PATB。在PATB界面下,选择Accuracy选项, 如图6-29. 精品.图 6-29界面左边框中数值代表影像坐标的限差,单位为微米。像坐标限差默认为像素大小的一半。界面右边框选的第一个数值代表控制点在大地坐标系中的平面限差,第二个数值代表控制点在大地坐标系中的高程限差。两者的默认大小都是0.6m。设置好限差后,点击Execute PATB,程序会根据指定的限差进行光束法空三解算。E. 编辑粗差点如果已经执行过PATB平差,那么在交互编辑主界面中单击菜单项报告PATB 平差结果,如图6-30所示。系统会调用Windows的记事本(Notepad.exe)打开PATB的平差报告。图6-30在PATB报告中,精度不好的像点会作为粗差观测值不参与最后的平差计算,显示的是PATB报告中的粗差报告部分。如图6-31所示:精品.图6-31报告中,第1列是像点粗差观测值的点号,第二列和第三列该点的x,y值,第四列和第五列代表该像点观测值的残差,单位为微米。在连接点编辑界面中,单击按钮 可以根据PATB的粗差报告自动删除所有的粗差像点;单击按钮 ,可以撤销最近一次删除粗差的操作。在PATB界面中,若已在Output选项卡中选中Critical Points选项,如图6-32所示,则可以在PATB报告中看到像点粗差的详细报告。 图 6-32根据报告,用户可以在连接点编辑中查找相应的点号并进入相应点的编辑界面,例如找到点11001171后,该点的编辑界面如图6-33所示。精品.图6-33粗差点编辑完成后,再次进行PAT解算。重复PAT解算和粗差点编辑,直到无粗差点被挑出为止。10 生成加密点文件 单击快捷图标生成加密点,再单击成果输出系统会在测区目录下自动生成加密点成果文件。6.3 GPS辅助空三由地面控制点反算影像的外方位元素时,无法省却一定的外业工作量。技术的发展打破了这一局面。可以实现动态定位。辅助空中三角测量就是利用安装在飞机上的接收机与地面基准站上的GPS接收机同步而连续地观测GPS卫星信号,经过GPS载波相位测量差分定位技术获取航摄仪曝光时刻摄站的三维坐标,将其视为附加观测值引入摄影测量区域网平差中,然后采用统一的数学模型和算法来整体确定目标点位和像片方位元素,极大地减少了甚至完全免除常规空中三角测量所必需的地面控制点,从而达到节省野外控制测量工作量、缩短航测成图周期、降低生产成本、提高生产效率的目的。在无失锁、周跳等信号间断的情况下,如果不考虑基准,GPS摄站坐标可完全取代地面控制。但在实际应用中为解决基准问题,改正由于失锁、周跳等引起的系统误差,需加入少量控制。大量的研究结果表明,带少量地面控制的GPS辅助光束法区域网平差理论精度非常好,达到自检校光束法区域网平差精度。实际精度,高程方面与理论精度完全符合,平面位置由于内业判点误差等导致与理论精度有一定差距。但平差结果完全满足测图控制对加密成果的精度要求。无地面控制GPS辅助光束法区域网平差具有较大的系统误差,实际精度与理论精度相差较远。但成果仍能满足了一定比例尺地形图航测成图的精度要求。一个成熟的数字摄影测量系统都应具有处理GPS数据的功能,其操作参见GPS/IMU联合处理过程。6.3.1 GPS/IMU数据处理摄影测量过程中,如何恢复影像的位置和姿态是一个关键问题,GPS联合IMU可以测定传感器的位置和姿态,给摄影测量的过程带来深远的影响。其原理如图6-34所示:精品.图6-34成熟的GPS/IMU 系统应具有以下功能:GPS辅助惯性导航与回归平滑功能、差分GPS数据处理功能、像片外方位元素计算功能、系统检校与质量控制功能、连接点半自动量测功能。6.3.2 GPS/IMU联合平差GPS定位数据和惯性导航数据IMU在空三中的应用已日益受到人们的关注,AATMatrix同样提供了使用GPS和IMU数据进行自动转点和联合平差的功能。在AATmatrix中输入GPS或IMU参数方法如下:单击界面左侧的快捷图标GPS+IMU,系统将进入GPS/IMU参数编辑界面。(如图6-35所示)图6-35在GPS/IMU参数编辑界面如图6-36所示。该界面按照影像的片号ID,X,Y,Z,,等外方位元素的顺序排列。点击快捷图标,进入编辑外方位元素界面。精品.图6-36编辑外方位元素界面如图6-37所示。图 6-37在该界面中,AATMatrix提供了两种角度模式:360度角和400度角;提供了两种转角模式:Omega, Phi, Kappa模式和Phi, Omega, Kappa模式。用户在导入GPS/IMU数据前,需要首先制定转角系统。另外,提供的GPS/IMU数据文件角元素必须是用三个转角方式提供,如果源数据是九个旋转矩阵参数,需要将其转换成转角参数。在本例中,GPS/IMU源文件如图6-38所示。精品.图6-38在编辑外方位元素界面点击打开,导入GPS/IMU源文件。如图6-39所示。图6-39选择标题行的所有字段,点击删除。删除不必要的信息,如标题信息后,选中一列数据,点击开始,该列数据会在界面中间的编辑框中显示。如图6-40所示。图 6-40将鼠标移动到编辑框某一字段时,该字段会高亮显示。右键单击该字段,定义该字段的类型,如定义成精品.“影像ID”,则程序会自动将与当前字段同列的所有字段都定义到“影像ID”类型中。如图6-41所示。对每个字段做同样的操作,直到所有需要的字段都被定义,然后点击确定。图6-41此时,对第一行各个参数进行设置并且注意线元素和角元素的顺序关系。设置完成后单击确定进入界面如下:图 6-42此时,单击自动关联,将影像名称和索引号匹配起来,界面如下:精品.图 6-43单击确定,返回GPS/IMU的原始界面。当完成GPS和IMU参数的输入后,用户不需要继续量测航线间的偏移点。系统在自动转点时会根据已经输入的GPS参数和INS参数完成航线间的相对定位。当引入GPS参数后,AATmatrix在调用PATB进行平差时会自动设置PATB中的GPS选项,如图6-44所示。精品.图6-44近来,很多学者对在空中三角测量中利用GPS数据可以达到什么样的预期精度和可靠性进行了广泛的研究,使得GPS辅助空三的应用越来越广泛。目前的研究结果表明:1. GPS摄站坐标在区域网联合平差中是极其有效的,只需要中等精度的GPS数据即可满足测图的要求。2. 外方位线元素的利用一般比角元素更有效。但是附加的姿态测量,在精度要求很高时可以用来改善高程加密精度。3. 利用GPS数据的光束法区域网平差将会有较好的可靠性,这包括GPS数据自身的可靠性,像点坐标观测值和少量地面控制点的可靠性4. 原则上讲,GPS提供的摄站坐标用于平差可以完全取代地面控制点,条件是GPS观测值在区域网中必须连续而没有中断。5. 为了解决基准问题,即为了获得国家坐标系(如高斯-克吕格坐标系)的加密成果,依然要求有一定的地面控制点。但是控制点数远远少于常规加密所需的控制点数。一般只在测区的角上布设平高控制点即可。由此可见,GPS定位数据和INS惯性导航数据在空三中的应用已日益受到人们的关注,AeroMatrix同样提供了使用GPS和INS数据进行自动转点和联合平差的功能。在做完上述数据准备工作后,不需要经过航带连接,就可以开始自动转点了,自动转点及后继操作参见6.3.2。6.4 LPS空三加密我们在第二章已经介绍了,LPS (Leica Photogrammetry Suite)是徕卡公司推出的数字摄影测量及遥感处理系统。它为影像处理及摄影测量提供了高精度及高效能的生产工具。它可以处理各种航天(包括QuickBuid、IKONOS、SPOT5、ALOS及LANDSAT等)及航空(扫描航片、ADS40 数字影橡)的各类传感器影像定向及空三加密,处理各种影橡格式(包括黑 /白、彩色、多光谱及高光谱等)的数字影像。与VZ不同的是,LPS的空三过程并不强调航带的概念,对模型的左右影像的区分也不甚敏感,我们只需要导入整个测区的影像,量测足够的控制点(或提供足够多的影像初始外方位元素),既可以进行空三处理。下面我们将介绍LPS的空三过程。本实验使用的软件版本为ERDAS IMAGINE9.1和LPS9.1。一、新建工程首先运行erdas,打开ERDAS IMAGINE9.1主面板:精品.图6-451、 运行ERDAS IMAGINE9.1的LPS模块,打开LPSproject manager 窗口:图像信息列表影像像窗口工程窗口图6-462、 单击file-open命令或工具条的图标打开create new block file 对话框,选择存盘路径并键入块文件名:AT_P,单击OK,系统默认文件扩展名为.blk,再次单击OK退出。3、 在随后打开的model setup对话框的geometric model category对话框下拉菜单中选择几何模型类型为camera,在geometric model 对话框中选择几何模型为Frame Camera(此处设置依自己获得的数据类型而定),单击OK退出。精品.图6-474、 随后自动打开block property setup对话框:图6-485、 单击horizontal对话框准中的set 按钮,打开projection chooser对话框,精品.图6-49单击standard工具条,在categories对话框下拉菜单中选择投影类型为UTM WGS84 North,在projection对话框中滑动竖直滚条,选择投影带为UTM Zone 50(range 114E-120E),当然,此处设置也是根据影象的投影类型和所在投影带设定的。6、单击custom工具条,查看、设置投影信息,投影类型UTM,参考椭球名WGS84,坐标系名WGS84,UTM投影带50,北半球。单击OK退出。在vertical对话框单击set按钮,在弹出的elevation info chooser对话框设置如下参数:spheroid name:WGS84, Datum name:WGS84, Elevation Units:meters, Elevation Type:height,单击OK退出7、单击next 按钮,接着设置航片特性信息,包括旋转系统、角度单位、影像朝向,平均航高、相机参数等。图6-50精品.设置平均航高为3000,(行高可以根据已知数据算得)9、单击edit camera 按钮,在打开的对话框设置相机的内方位元素:图6-51单击fiducials选项卡,在此页面中输入影像的框标坐标:图6-52精品.在number of Fiducials 文本框中输入框标数为:8在框标坐标列表框中,行数是框标编号,第一列为对应框标的x坐标,第二列为y坐标。鼠标单击每个表格,输入相应的坐标值。也可以直接导入8个框标的坐标。首先根据框标坐标列表建立如下格式的相机文件:图6-53单击第一行编号按钮,拖动至第八行编号按钮;然后按同样的方式同时选中Film X和Film Y按钮;单击鼠标右键,在弹出的右键菜单中选择import,弹出import Column data对话框,如下:图6-54单击浏览按钮,在相应目录下找到之前建立的相机文件camera.txt,确定后,单击options按钮,打开import Column Options对话框:图6-55精品.在这个对话框中设置相关参数,告诉程序你建立的相机文件的格式。设置完毕后单击OK退出到import Column data对话框,再次单击ok,退出。单击radial lens distortion选项卡,在此属性页输入相机辐向畸变校准参数,示例数据中没有这项参数,所以这里不再输入。相机参数设置完毕单击OK,退出camera information窗口,回到block property setup窗口。在block property setup窗口单击按钮,可以导入外方位元素参数,示例数据不提供外方位元素参数,这里不再讲解导入步骤,同学们可以参考前面导入相机文件的操作过程,自己探索导入方法。 单击OK,退出block property setup窗口。二、 添加影像1、 在LPS project manager窗口单击edit/add frame命令打开添加文件对话框,选择要添加的影像,回车确定,单击OK退出。2、 在LPS project manager窗口的图像信息列表显示如下:图6-56上图右侧的阵列代表工程的进度情况,绿色表示已经完成,红色表示还未进行。影像添加完毕。三、 计算金字塔影像1、 单击editor/compute pyramid layers命令,弹出compute pyramid layers窗口,选中all images without pyramids单选框,单击OK确定,系统开始计算金字塔影像,完成后影像信息列表的pyr.下的几个单元格变绿。图6-57还可以通过单击Pyr.下的红色单元格实现这一功能。精品.金字塔影像是LPS软件基于二项式插值算法和高斯滤波,利用ERDAS的相关功能,对影像进行合并运算,并按合并像素个数不同分级,金字塔影像的最底层就是原始影像。这样做既保留了必须的影象信息,又提高了对影像的后续运算速度而节约时间。四、 内定向单击edit/frame editor命令或工具条命令按钮,打开digital camera frame editor窗口,单击interior orientation 功能条,打开属性页:图6-58单击next按钮,可以查看其他影像的相机内参数。 单击Fiducial Orientation下面的四个坐标系按钮,选择自己相机文件对应的框标坐标系,Viewer Fiducial Locator下面的控件框内提供了内定向的一些工具按钮,单击按钮,系统加载当前影像进行内定向,加载后如下图所示:图6-59精品. 上图影像窗口的左窗口为主窗口,右上窗口为全局试图窗口,右下窗口为细节视图窗口。加载后,系统自动把连接光标移动到第一个框标附近(若自动跳转按钮处于弹起状态,则不会自动跳转),按下按钮,我们可以移动连接光标,使影像的框标位于细节视图窗口的中间。按住主窗口连接光标的范围框拖拉,可调整细节图的显示比例。单击测量图标,但细节图的框标中心点击一下,系统自动测量该点的像素坐标,显示与窗口下方信息列表中,并跳转到下一框标位置,继续测量其他框标点,量测完毕后可在信息列表查看量测结果和残差:图6-60如果残差符合精度要求,可单击next按钮继续量测下张影像;若残差没有达到要求,可以重新量测残差大的框标。 系统提供了自动内定向功能,单击自动内定向图标,弹出自动内定向窗口:图6-61 在Locate Fiducial Marks for单选框中选择是对当前影像自动内定向还是对所有影像,然后设置参数改正的阈值和残差阈值。单击Run按钮,系统对所选择的影像进行自动内定向。运行完毕后,单击Report按钮,查看贵各影像的内定向精度,如果精度满足要求,但就Accept按钮退出。退出后可以在内定向窗口查看内定向结果,并可按手工量测方式对结果进行微调。 对所有影像进行内定向后,单击OK退出,LPS project manager窗口的图像信息列表的int.方格变为绿色:精品.图6-62五、 量测控制点下面这一步将要根据已有的控制点的地方坐标和像方坐标,按共线方程解求每张航片的外方位元素平差值,这里至少要求三个地面控制点,和一个高程控制点。1、 单击edit-point measuerment命令或工具条上命令按钮,开始量测控制点。2、 在弹出的select point measurement tool对话框中,选择你想要的量测工具类型,单击OK退出。3、 弹出point measurement 窗口:图6-63精品.如上图:控制点量测窗口包括左右影像窗口、工具箱、影像选择窗口、控制点(加密点)地面坐标信息窗口、像片坐标信息窗口组成。LPS的影像窗口对左右影像的概念并不敏感,我们可以不考虑影像的左右顺序,只需要使加载的两幅影像具有重叠区域,然后在重叠区域量测控制点即可。如果某控制点同时处在多张影像(比方说航带的三度重叠区)上,量测完当前影像后,可以在影像选择窗口left view(或right view都可)下来菜单中选择其他影像继续量测。下面将介绍具体量测方法:我们可以单击add按钮,地面坐标信息窗口增加一行表格,点击相应表格输入一个控制点的坐标,依此顺序增加控制点信息。也可以直接导入控制点地面坐标,方法是:首先建立控制点文件,格式为:点号 x y z点号 x y z点号 x y z在工具箱单击import按钮,弹出Import/Export Points对话框:图6-64选择import,文件类型为ASCII,控制点类型为Reference Points (3d),单击OK按钮,弹出选择文件路径对话框,选择控制点文件,单击OK退出。系统弹出Reference Import Parameters对话框:精品.图6-65在此对控制点的坐标系类型等参数,系统默认显示的是建立工程师设定的坐标系,一般不需要改动。单击OK。系统弹出Import Options对话框:图6-66在此对话框设置控制点文件格式,以使系统能正确读入控制点坐标信息,可以单击Input Preview选项卡预览导入的控制点文件的读入格式。设定完毕,单击OK,系统读入控制点信息,并显示在控制点量测窗口下方的地面坐标信息列表中:精品.图6-67 可以单击某个控制点对应的Type下方的单元格,在弹出菜单中设置控制点类型(有full/horizontal/vertical/none几种类型),在usage下的表格中设置点的用途(有control/tie/check几种类型)。下面要进行的就是量测控制点了,1) 在点的地面坐标信息列表中的Point#下面的单元格中单击,选中某一控制点(选中状态为黄色高亮显示),2) 在左右影像窗口分别移动连接光标,使控制点在影像上的对应点位居于细节图中间,3) 工具栏单击加点图标,在左影像的细节图的控制点点位上单击,该点位上显示绿色十字丝和点号,表示刺点成功4) 按照第三步在右影像上刺点第一个控制点量测完毕,这时在影像坐标信息列表分别显示了控制点在不同影像上的影像坐标,如图6-40所示为某控制点在各张影像上的量测坐标:图6-68量测的6156号控制点的影像坐标图6-41是某控制点的量测结果:精品.图6-69按照上述步骤继续量测其他控制点。确定控制点信息无误后,点击 窗口右上方的save按钮保存。六、 自动匹配1、 在point measurement 窗口的工具箱点击(automatic tie properties)命令按钮,打开automatic tie point generation窗口,点击general功能条,在images used单选按钮中选中all available选项;在initial type单选按钮中选中exterior/header/GCP选项;在image layer used for computation对话框中输入1,表示利用金字塔影像的第一层进行计算以确保精度。图6-702、 单击Strategry选项卡,在打开的属性页中设置相关参数:精品.图6-71单击Distribution选项卡,设置有关参数:图6-723、 单击run 按钮,运行自动匹配。4、 运行完成,弹出auto tie summary窗口,显示自动匹配的相关信息:图6-735、 单击report按钮,可以用ERDAS的编辑器查看上述信息。如有需要,可以保存。6、 关闭auto tie summary窗口,在point measurement窗口查看各匹配点是否可以接受。7、 单击save按钮,保存。精品.七、 空中三角测量1、 在工具箱面板单击按钮打开Aerial Triangulation 参数设置窗口:图6-74单击General选项卡,在此属性页中设置最大迭代次数和迭代收敛值;2、 单击point选项卡,在此属性页中设置相关精度指标:图6-75在GCP type and standard deviations 对话框的type下拉菜单中选择same weighted values选项,根据控制点精度设置控制点的标准差。 本别打开其他几个属性页,根据实际情况设置相应的参数,这里就不一一介绍。3、 单击run按钮,运行空中三角测量。精品.4、 运行完毕,弹出Triangulation Summary窗口,显示三角测量基本信息:整体误差小于一个像素,是可以接受的图6-765、 单击Report按钮,打开空中三角测量详细信息文本,查看相关信息:迭代计算后的外方位元素末次迭代标准差和地物点最大改正图6-776、 检查相信信息后,如果结果可以接受,退出报告。7、 在Triangulation Summary 窗口点击update更新,单击accept接受计算结果,单击close退出。接受计算结果后,匹配点的地面坐标显示在地面坐标信息列表中。如图所示:精品.图6-78 退出空三窗口。8、 在LPS Project Manager窗口显示空三后的航片及点的信息。在图像信息列表中Ext.列标下的方格变绿,表明空中三角测量已经完成。变为绿色显示点位信息 精品.图6-799、 单击图像窗口的各点位的红色方框或三角框(方框为匹配点,三角框是控制点),可以查看单个点的信息:图6-80 空三完成以后,我们还可以在此窗口根据空三的结果生成DEM和正射影像,在这里就不做详细介绍,建议同学们在课下进行这两个实验操作!6.5习题1在GPS辅助空中三角测量中,GPS的作用是什么?GPS辅助空三的优势体现在哪些方面?2在自动空三系统中,各像片间像片连接点的量测与连接是怎样进行的?3在自动空三流程中,自动挑点的目的是什么?怎样进行?4在自动空三流程中,平差解算是否只进行一次就能达到精度要求?为什么?如有侵权请联系告知删除,感谢你们的配合!精品
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!