地铁保护监测技术设计方案(专家评审版)

上传人:馨*** 文档编号:70429567 上传时间:2022-04-06 格式:DOC 页数:21 大小:4.33MB
返回 下载 相关 举报
地铁保护监测技术设计方案(专家评审版)_第1页
第1页 / 共21页
地铁保护监测技术设计方案(专家评审版)_第2页
第2页 / 共21页
地铁保护监测技术设计方案(专家评审版)_第3页
第3页 / 共21页
点击查看更多>>
资源描述
.wd南京南站综合枢纽快速环线工程(龙西立交二期)地铁保护区监测工程技术方案南京地铁资源开发有限责任公司二零一六年六月南京南站综合枢纽快速环线工程(龙西立交二期)地铁保护区监测工程技术方案校核:南京地铁资源开发有限责任公司二零一六年六月关于南京南站综合枢纽快速环线工程龙西立交二期地铁保护区监测工程技术方案专家评审意见的回复针对该工程监测技术方案的专家意见,我公司回复如下:专家意见回复意见1、增加拱顶沉降监测,应根据匝道位置优化隧道监测点布设;2、填方段隧道监测点适当加密;3、 进一步调查明确桥梁梁部施工工法,加强对施工现场巡查。1、已增加拱顶垂直位移监测,并根据匝道位置优化监测点布设,详见P10;2、填方段隧道监测点已加密,详见P10;3、 桥梁梁部施工工法为现浇,施工期间应加强对施工现场巡查,防止大型重载车辆对隧道的碾压,控制外部施工对隧道的影响。编制人校核人审核人目 录1、工程概述11.1工程概况11.2工程地质、水文地质概况21.3 新建匝道与地铁的相对位置关系41.4 工程分类51.5 施工工期52、地铁保护监测62.1 监测依据及采用主要技术标准62.2 监测的重要性及目的63、监测范围及内容63.1 监测范围63.2 影响范围段既有构造永久变形情况简要统计分析63.3 监测工程及测点布置83.4 监测频率84、初始状态调查95、监测方案95.1 道床垂直位移监测95.2 拱顶垂直位移监测105.3 水平直径收敛监测115.4 地铁构造或设施表观病害及外部施工巡查115.5 工作量统计125.6 控制标准126、监测工作资源配备136.1 工程人员配置136.2 仪器设备配置137、信息反响制度138、成果图编制内容159、监测质量保证措施15附图一垂直位移及隧道收敛监测布点图16南京南站综合枢纽快速环线工程(龙西立交二期)地铁保护区监测工程技术方案1、 工程概述1.1工程概况南京南站综合枢纽快速环线龙西立交二期工程主要实施三个转换方向的匝道:ES匝道、WS匝道以及NE匝道,以完善宏运大道地面主干路和机场高速的交通转换功能。龙西立交二期工程北东采用苜蓿叶环形匝道NE匝道实现左转交通,东南采用迂回定向匝道ES匝道实现左转交通,右转方向采用西南转向匝道WS匝道实现。本立交构造共三层,其中宏运大道地面主干路位于第一层;机场高速主线和集散车道位于第二层,上跨宏运大道地面主干路;WS匝道和NE匝道位于第一层和第二层之间;ES匝道位于第三层,上跨机场高速主线和集散车道、宏运大道地面主干路,立交最高点位于此匝道上。ES匝道桩号范围K0+000K1+010.114,全长949.252m;沿线与站西四路相交、上跨龙西立交一期工程EN匝道、东集散车道、机场高速及西集散车道,与西集散车道衔接。WS匝道桩号范围K0+000K0+286.302,全长224.883m,与ES匝道衔接。NE匝道桩号范围K0+000K0+496.927,全长96.927m;下穿西集散车道、机场高速及东集散车道,与宏运大道衔接。拟建工程区域地理位置图见图1-1。匝道与地铁穿插处图1-1 拟建工程区域地理位置图1.2工程地质、水文地质概况(一)工程地质条件拟建立交桥主要位于南京市宏运大道,全线总体属于岗地地貌单元。沿线现状主要为宏运大道及砂场。线路区除砂场地势较高外,其余地段地势较低,地形较平坦。线路区地面高程一般在12.19920.195m,相对高差7.99m。区间内工程地质剖面图如图1-2、图1-3所示。图1-2 WS匝道区间工程地质剖面图图1-3 ES匝道区间工程地质剖面图勘察深度范围内,根据?公路工程地质勘察标准?(JTG C20-2021),按岩土体成因类型、时代、埋藏分布特征及物理力学性质指标的异同性,把岩土体划分为3个工程地质层,5亚层,具体分述如下:层素填土:灰黄灰色,松散,主要由黏性土组成,夹少量碎石碎块,局部夹少量植物碎屑。沿线大局部有分布,厚度不均匀。-1层粉质黏土:黄灰色,可塑,含铁锰质斑点,有光泽,干强度、韧性高。沿线局局部布,厚度变化较大。-2层粉质黏土:黄褐色,硬塑,局部可塑,稍有光泽,无摇振反响,干强度中低,韧性中低。沿线局部缺失,厚度变化较大。-1强风化砂岩:紫红色,呈密实“砂土、混碎石状,局段“碎块状,极不均质,遇水软化崩解。岩体根本质量等级为级。整体分布。-2中等风化砂岩:紫红色、灰白色,整体分布。岩芯呈“短柱状“柱状,局段“碎块状,发育一二组闭合裂隙, 裂隙倾角25、45,由钙质、铁质胶结,块状构造,锤击声较脆、可碎,为软较软岩,岩体根本质量等级为级,未揭穿。各岩土层埋藏分布特征详见“工程地质剖面图,各层层厚、层顶高程及埋深等详见表1-1。层厚度(m)层底深度(m)层底标高(m)层顶深度(m)层顶标高(m)号最小值最大值最小值最大值最小值最大值最小值最大值最小值最大值11.409.701.409.708.9413.940.000.0012.2020.203-12.2014.104.5018.50-2.2910.112.209.708.9413.113-21.4016.604.4025.30-7.308.921.4018.50-2.2913.944-10.703.304.0026.00-8.298.201.4025.30-7.3010.804-2最大提醒32.7m-37.00-17.804.0026.00-8.298.20表1-1 场地地层层顶埋深、层顶标高统计表各岩土层物理力学指标按?岩土工程勘察规?GB50021-20012021年版进展了分层统计,统计结果详见“土层主要物理性质指标平均值统计表附表1-2表1-2 土层主要物理性质指标平均值统计表层号岩 土 名 称含水率重度孔隙比液限塑限塑性指数液性指数weOwLwPIpIL%kN/m3-%-素填土26.618.40.84934.521.213.600.41-1粉质黏土25.819.60.72334.119.614.60.44-2粉质黏土23.719.70.68035.220.015.10.24注:数据根据前期勘察提供。(二) 场地水文地质条件拟建场地地下水主要为基岩裂隙水。基岩裂隙水赋存于深部基岩裂隙中,完整基岩裂隙一般不发育,孔隙性差,富水性差,可视为相对隔水层。雨期厚填土可能赋存少量上层滞水。对本工程根本无影响。1.3 新建匝道与地铁的相对位置关系1ES匝道桥与地铁的相对位置关系ES匝道为高架桥梁匝道,与地铁S1号线间存在两处穿插。14号桥墩位于地铁线上、下行线盾构之间,桥墩桩基与盾构构造外壁间最小净距为5.0m;13号桥墩、15号桥墩分别位于地铁线盾构东、西两侧,桥墩桩基与盾构构造外壁间最小净距为15.993 m。图1-4ES匝道北侧桩基与地铁隧道平面位置关系24号桥墩位于地铁下行线西侧,桥墩桩基与盾构构造外壁间最小净距为6.717m;25号桥墩位于地铁上、下行线盾构之间,桥墩桩基与盾构构造外壁间最小净距为6.847m;26号桥墩位于地铁下行线东侧,桥墩桩基与盾构构造外壁间最小净距为6.866m。图1-5ES匝道南侧桩基与地铁隧道平面位置关系2NE路基匝道与地铁S1号线相对位置关系NE匝道为路基匝道,在平面上与地铁S1号线存在4处穿插,分别位于桩号K0+50K0+125及K0+365K0+405范围内。NE匝道K0+50K0+125的设计高程为19.7m18.128m吴淞高程,填挖高度为-3.0m2.2m;NE匝道K0+365K0+405的设计高程为11.871m 11.751m吴淞高程,填挖高度小于0.3m;NE匝道外侧的人行道设计高程为11.72711.607,填挖高度约-3.0m-2.8m,考虑到本立交范围内S1号线平均埋深超20m,NE匝道及外侧人行道拟按常规路基进展填挖处理。后期为优化立交范围内的绿化景观效果,本工程拟对NE匝道范围内的土方结合匝道的高程进展整平处理并种植绿化,地铁S1线水平向22m范围内的填挖高度为-3.0m2.0m。图1-6 NE匝道与地铁隧道平面位置关系1.4 工程分类本工程主要为桩基施工及上部土方填挖,按照资源公司关于地铁平安保护区施工作业监测数据采集工程分类的规定,该工程属于类工程。1.5 施工工期工期待定;本工程监测跟踪期为3个月。2、 地铁保护监测2.1 监测依据及采用主要技术标准2.1.1 方案的编制依据1?南京市轨道交通条例?2021年5月2?南京南站综合枢纽互通立交桥平面设计图?3南京地铁S1号线平面、纵断面图2.1.2采用的主要技术标准:1?城市轨道交通构造平安保护技术标准?CJJ/T202-20212?城市轨道交通工程测量标准?GB50308-20213?建筑变形测量标准?JGJ8-20074?测绘成果质量检查与验收?GB/T 24356-2021 5?测绘技术总结编写规定?CH/T1001-20052.2 监测的重要性及目的根据南京南站综合枢纽互通立交桥平面设计图和?南京市轨道交通条例?有关规定,为保证地铁构造的平安,应对其进展全方位监测。通过监测工作的实施,掌握该工程在施工过程中对既有地铁工程构造引起的变化,为建立方及地铁相关方提供及时、可靠的数据和信息,评定施工对既有地铁工程构造的影响,及时判断既有地铁工程的构造平安,对可能发生的事故提供及时、准确的预报,防止恶性事故的发生。3、 监测范围及内容3.1 监测范围本次监测范围为地铁S1号线南京南站翠屏山站区间隧道,具体里程为K33+263K33+486,约221m。3.2影响范围段既有构造永久变形情况简要统计分析收集该里程段历史垂直位移观测资料,工后首期观测时间为2021年1月,运营首期观测时间为2021年12月,末期观测时间为2021年3月,期间相对工后最大垂直位移量为-14.7mm,相对运营最大垂直位移量为-2.6mm,说明该里程段地铁构造垂直位移根本稳定。该里程段现有局部垂直位移监测点的观测成果详见表3-1。表3-1 该里程段现有局部垂直位移监测点构造永久监测累计沉降量序号上行线右线下行线左线里程相对运营累计量mm相对轨后累计量mm里程相对运营累计量mm相对轨后累计量mm1K33+259-1.6 -14.7 K33+258-1.8 -10.1 2K33+273-1.6 K33+272-2.1 3K33+291-1.6 -10.0 K33+288-2.0 -9.7 4K33+307-1.5 K33+303-2.1 5K33+321-1.4 -9.5 K33+318-1.6 -9.4 6K33+331-1.7 K33+332-1.7 7K33+346-1.6 -9.9 K33+348-2.6 -8.9 8K33+362-1.5 K33+363-1.6 9K33+376-0.6 -9.4 K33+378-1.7 -9.0 10K33+391-1.8 K33+392-1.8 11K33+407-1.7 -9.6 K33+408-2.2 -8.3 12K33+422-1.8 K33+422-1.7 13K33+438-1.8 -9.4 K33+438-1.6 -8.9 14K33+453-1.8 K33+452-1.4 15K33+468-1.9 -9.5 K33+468-1.5 -7.7 16K33+483-1.8 K33+482-1.5 17K33+489-1.7 K33+487-1.5 注:工后首期观测时间为2021年1月;运营首期观测时间为2021年12月收集该里程段历史水平直径收敛观测资料,首次观测时间为2021 年5月,末期观测时间为2021年3月,翠屏山南京南区间有1处管片直径与设计值较差超标,位于K31+214,在此期间管片直径累计变化量均小于3mm,具体分布情况如图3-1、图3-2。工程监测范围图3-1 翠南区间上行线管片直径累计变化量曲线图工程监测范围图3-2 翠南区间下行线管片直径累计变化量曲线图3.3 监测工程及测点布置根据该隧道构造形式,在施工过程中,采用人工监测的手段对区间隧道进展监测,并对地铁表观病害进展初始普查。各构造监测内容如表3-2所示。表3-2监测工程及频率表构造形式测项备注盾构管片隧道道床垂直位移拱顶垂直位移水平直径收敛构造表观病害观测及施工现场巡视3.4监测频率各分项监测频率见表3-3。表3-3监测工程及频率表序号监测工程监测频率桩基及路基施工墩柱施工跟踪期时段时段3个月1基准网垂直每月复测1次2道床垂直位移1天1次4天1次10天1次3拱顶垂直位移1天1次4天1次10天1次4水平直径收敛1天1次4天1次10天1次5构造表观病害巡查及施工现场巡视对既有地铁构造裂缝及渗漏进展巡视与记录,遇变形较大时加强表观巡查。注:1、如遇发生大的变形,应及时调整监测频率;2、监测过程中视变形情况,动态调整监测频率,结合既有收敛值分级控制。3、经咨询方案编制人员,在ES砸道上部构造施工时直接进入跟踪监测。4、初始状态调查进场监测前,对监测范围内隧道构造进展水平直径收敛逐环普查,并对可能存在的裂缝及渗漏进展系统普查,标记具体的里程及位置,绘制平面展开图。工程进入跟踪期后,再次对监测范围内隧道构造进展水平直径收敛逐环普查。5、 监测方案5.1 道床垂直位移监测1监测方法道床垂直位移监测采用精细水准测量方法。根据?城市轨道交通工程测量标准?GB50308-2021变形监测要求,沉降监测基准网按等垂直位移监测控制网的技术要求进展,并布设成闭合水准路线。变形沉降监测点按等垂直位移监测网技术要求进展,并布设成附合或闭合水准路线。表5-1 垂直沉降监测控制网的主要技术要求等级相邻基准点高差中误差mm测站高差中误差mm往返较差,附合或环线闭合差mm检测已测高差之较差mm0.50.150.30.4表5-2 垂直沉降监测的主要技术要求等级高程中误差mm相邻点高差中误差mm往返较差,附合或环线闭合差mm0.50.30.3注:n为测站数。表5-3 水准观测主要技术要求等级仪器型号水准尺视线长度m前后视距差m前后视距差累计差m视线离地面最低高度m基、辅分划读数较差mm基、辅分划读数所测高差较差mmDS05铟瓦300.51.50.30.30.42基准点布设基准点作为垂直位移监测的起始依据,其稳定性十分重要。基准点要求稳定可靠,远离变形区80120m外。隧道左右线各选择2个工作基点,分别为JZ1、JZ2、JY1、JY2,在工程段隧道两端风井布设4个基准点,分别为J1、J2、J3、J4,各基准点每月联测一次,以判断基准点的稳定性,基准点位置见图5-1。图5-1 监测基准网示意图3监测点布设监测范围内高架匝道跨越隧道处,每个交点处布设5个道床垂直位移监测点,每5米一个,共20个,编号分别为Y1Y5、Y23Y27、Z1Z5、Z22Z26;路基匝道与隧道相交处,根据路基影响范围,每5米布设一个道床垂直位移监测点,中心岛填挖区域每10米布设一个道床垂直位移监测点,共33个,编号分别为Y6Y22、Z6Z21,监测点布设时尽量利用已有构造监测点,以利于数据整合分析。总监测范围内共布设53个道床垂直位移监测点,详细布点图见附图1垂直位移及隧道收敛监测布点图。4数据处理道床沉降监测点每期监测成果与上期监测成果、工程保护监测初始观测成果、工后起始成果进展比照,获取道床本期变形量、保护监测期间阶段变形量、相对工后初值累计变形量。5.2拱顶垂直位移监测1拱顶垂直位移监测方法拱顶垂直位移采用全站仪和监测小棱镜以三角高程的方法进展观测,其原理如图7-1所示。在远离变形区域80-120m外的基准点上放置一个棱镜,作为观测基准点,然后在测点与基准点约中点位置放置全站仪,整平后分别对监测点与基准点进展观测,观测2各测回,对数据进展处理后分别得到基准点、监测点与仪器之间的高差h1、h2,由基准点高程H0得到监测点高程为H=H0+h1+h2。图7-1 拱顶垂直位移监测原理图精度分析:根据上述测量方法方式,只考虑全站仪的测距和测角误差的影响,那么拱顶垂直位移的中误差为,极限情况下,监测点距离测站点最远距离为110米,前、后视垂直角分别为10、5,据此估算拱顶沉降2个测回的中误差约为0.76mm,满足监测精度1mm的要求。2监测点布设区间隧道左线布设26个拱顶垂直位移监测点,右线布设27个拱顶垂直位移监测点左线ZD1ZD26;右线YD1YD27,与对应道床垂直位移监测点Z1Z26;Y1Y27所在断面重合;拱顶垂直位移监测点共计53个,详细布点见附图1垂直位移及隧道收敛监测布点图。5.3水平直径收敛监测1监测方法在隧道两侧腰线上布设棱镜或反射片形成一条水平基线,且基线通过隧道假定圆心,采用全站仪自由设站的方式或激光测距仪量测水平基线的长度。2点位布设及数量区间隧道左线布设26个监测断面,右线布设27个监测断面左线SLZ1SLZ26;右线SLY1SLY27,与对应垂直位移监测点Z1Z26;Y1Y27所在断面重合;水平直径收敛监测断面共计53个,详细布点见附图1垂直位移及隧道收敛监测布点图。5.4 地铁构造或设施表观病害及外部施工巡查5.4.1地铁构造或设施巡查工程实施前,对地铁车站及隧道构造初始状态进展检查并记录。日常车站及隧道巡视采用人工巡视。车站及隧道构造病害巡查的具体步骤如下:1现场踏勘、记录并观测已有裂缝的分布位置,裂缝的走向、长度。2对于新发生的裂缝及时观测,分析裂缝形成的原因,判断裂缝的开展趋势。3观测时使用读数显微镜可准确到0.1mm量出特征裂缝的距离及裂缝长度,求得裂缝的变化值。定期对监测范围内的特征裂缝进展巡视,对于新发现的裂缝,做好记录,及时埋设观测标志进展量测。4对于发现有渗漏的地方进展观测,测量出渗漏面积和渗漏程度,并对渗漏作出分析。5.4.2外部施工巡视日常监测工作中,定期对基坑施工状态及周边环境进展巡视,尤其重载运输车辆的运输路线,并填写现场巡查日志。5.5 工作量统计本工程的监测工作量统计如表5-4所示。表5-4监测工作量统计序号监测工程点数/断面数备注1垂直基准网42水平直径收敛逐环普查根据现场确定初始状态及跟踪期共两次3道床垂直位移534拱顶垂直位移535水平直径收敛536裂缝、渗漏观测工作组日注:如遇发生大的变形,应及时调整监测频率,并加强构造表观巡查。5.6 控制标准表5-5监测控制标准表序号监测对象监测工程报警值戒备值限值1地铁构造构造垂直位移3.3mm6.7mm10.0mm2水平直径收敛相对标准圆30mm相对标准圆45mm相对标准圆60mm施工期间3.3mm施工期间6.7mm施工期间10.0mm3构造裂缝/0.3mm6、监测工作资源配备6.1 工程人员配置工程负责人:高永技术负责人:蔡乾广 李济民外业组:6人内业组:3人6.2 仪器设备配置本工程拟投入仪器设备情况如表6-1所示。表6-1 拟投入仪器设备一览表序号仪器设备名称单位数量精度1水准仪及铟瓦水准尺台10.3mm/km2全站仪台11.0 1+1ppm3裂缝测宽计台10.1mm4数据分析及处理软件套15笔记本电脑台16相机台17打印机台18车辆辆17、 信息反响制度为确保监测成果的质量,加快信息反响速度,每次监测必须有监测成果,并及时进展监测成果的分析,当数据异常或出现报警情况时,当天内向有关单位提交监测成果及分析报告,对当前的施工及既有监测对象状态进展评价和提出建议。同时按照南京地铁指挥部?运营线路构造变形监控及处置管理方法?的规定上报有关部门或单位,以便及时采取措施,确保地铁构造平安。?运营线路构造变形监控及处置管理方法?中第四章有关保护区监测工程的平安管控及处置概要如下:1对监测数据到达报警值以上、变化速率超标的保护区监测区域,由集团质量平安部提出处置意见,经小组研究、决策后实施。2当监测数据在报警值与戒备值之间,且变化速率超标时,资源公司应及时通报建立单位,集团质量平安部应密切关注,积极协调和跟踪。3当构造监测数据在戒备值与限值之间时,且变化速率超标时,资源公司应加强监测,集团质量平安部应组织建立单位召开专家咨询会研究对策和确定处置方案。4当构造监测数据超出限值时,且变化速率超标时,资源公司应力争做到不连续监测,运营公司应给予配合,集团质量平安部应及时通报市建立行政主管部门,并配合市建立行政主管部门召开专家咨询会,确定下一步工作和方案,地保办及时介入。8、 成果图编制内容监测成果整理,就是通过对每次测量成果进展比拟、分析,并根据变形监测的戒备值来判断监测对象是否发生了变形垂直位移、隧道收敛,并分析发生变形的原因,对变形趋势进展预测、预报等。监测成果书主要有以下内容:1监测说明及分析报告等;2垂直位移、隧道收敛及构造裂缝渗漏等观测成果。9、 监测质量保证措施1作业前,监测工程负责人根据工程具体情况合理配备监测小组人员及测量仪器,责任到人。2监测工程技术负责人组织监测人员进展技术交底,学习相关标准、监测技术标准以及监测作业指导书,在工程负责人带着下开展监测工作。3监测工作所需的全部仪器必须按规定进展检定、校验和检验。仪器在使用过程中,严格按照规定程序操作,以免测量仪器受损。仪器管理采用专人专用、专人保养、专人校验。4监控量测人员详细了解施工动态,合理分析数据,与地铁质量平安部、工程建立单位严密联系,为信息化施工做好各方的配合工作。5监控量测单位按信息反响要求,及时向地铁质量平安部、工程建立单位等相关单位,提供真实可靠的监测数据。02附图一 垂直位移及隧道收敛监测布点图
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑环境 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!