文科数学 北师大版练习:第八章 第一节 直线的方程 Word版含解析

上传人:仙*** 文档编号:41604880 上传时间:2021-11-21 格式:DOC 页数:7 大小:88KB
返回 下载 相关 举报
文科数学 北师大版练习:第八章 第一节 直线的方程 Word版含解析_第1页
第1页 / 共7页
文科数学 北师大版练习:第八章 第一节 直线的方程 Word版含解析_第2页
第2页 / 共7页
文科数学 北师大版练习:第八章 第一节 直线的方程 Word版含解析_第3页
第3页 / 共7页
点击查看更多>>
资源描述
课时作业A组基础对点练1直线xya0(a为实常数)的倾斜角的大小是()A30°B60°C120° D150°解析:直线xya0(a为实常数)的斜率为,令其倾斜角为,则tan ,解得150°,故选D.答案:D2如果AB<0,且BC<0,那么直线AxByC0不通过()A第一象限 B第二象限C第三象限 D第四象限解析:直线AxByC0可化为yx,AB<0,BC<0,>0,>0.直线过第一、二、三象限,不过第四象限,故选D.答案:D3直线x(a21)y10的倾斜角的取值范围是()A0, B,)C0,(,) D,),)解析:由直线方程可得该直线的斜率为,又1<0,所以倾斜角的取值范围是,)答案:B4若方程(2m2m3)x(m2m)y4m10表示一条直线,则参数m满足的条件是()Am Bm0Cm0且m1 Dm1解析:由解得m1,故m1时方程表示一条直线答案:D5设aR,则“a1”是“直线l1:ax2y10与直线l2:x2y40平行”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件解析:由a1可得l1l2,反之,由l1l2可得a1,故选C.答案:C6设直线l的方程为xycos 30(R),则直线l的倾斜角的取值范围是()A0,) B.C. D.解析:当cos 0时,方程变为x30,其倾斜角为;当cos 0时,由直线l的方程,可得斜率k.因为cos 1,1且cos 0,所以k(,11,),即tan (,11,),又0,),所以,综上知,直线l的倾斜角的取值范围是.答案:C7(20xx·开封模拟)过点A(1,3),斜率是直线y3x的斜率的的直线方程为()A3x4y150 B4x3y60C3xy60 D3x4y100解析:设所求直线的斜率为k,依题意k×3.又直线经过点A(1,3),因此所求直线方程为y3(x1),即3x4y150.答案:A8直线(2m1)x(m1)y7m40过定点()A(1,3) B(4,3)C(3,1) D(2,3)解析:2mxxmyy7m40,即(2xy7)m(xy4)0,由,解得则直线过定点(3,1),故选C.答案:C9(20xx·张家口模拟)直线l经过A(2,1),B(1,m2)(mR)两点,则直线l的倾斜角的取值范围是()A0 B.<<C.< D.<解析:直线l的斜率ktan m211,所以<.答案:C10已知直线xa2ya0(a是正常数),当此直线在x轴,y轴上的截距和最小时,正数a的值是()A0 B2C. D1解析:直线xa2ya0(a是正常数)在x轴,y轴上的截距分别为a和,此直线在x轴,y轴上的截距和为a2,当且仅当a1时,等号成立故当直线xa2ya0在x轴,y轴上的截距和最小时,正数a的值是1,故选D.答案:D11已知点M(0,1),点N在直线xy10上,若直线MN垂直于直线x2y30, 则点N的坐标是()A(2,1) B(2,3)C(2,1) D(2,1)解析:点N在直线xy10上,可设点N坐标为(x0,x01)根据经过两点的直线的斜率公式,得kMN.直线MN垂直于直线x2y30,直线x2y30的斜率k,kMN×1,即2,解得x02.因此点N的坐标是(2,3),故选B.答案:B12直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_解析:如图,因为kAP1,kBP,所以k(,1,)答案:(,1,)13已知直线l:axy2a0在x轴和y轴上的截距相等,则实数a_.解析:令x0,则l在y轴上的截距为2a;令y0,得直线l在x轴上的截距为1.依题意2a1,解得a1或a2.答案:1或214(20xx·武汉市模拟)若直线2xym0过圆x2y22x4y0的圆心,则m的值为_解析:圆x2y22x4y0可化为(x1)2(y2)25,圆心为(1,2),则直线2xym0过圆心(1,2),故22m0,m0.答案:015设点A(1,0),B(1,0),直线2xyb0与线段AB相交,求b的取值范围解析:b为直线y2xb在y轴上的截距,当直线y2xb过点A(1,0)和点B(1,0)时,b分别取得最小值和最大值b的取值范围是2,2B组能力提升练1已知f(x)asin xbcos x,若ff,则直线axbyc0的倾斜角为()A. B.C. D.解析:令x,则f(0)f,即ba,则直线axbyc0的斜率k1,其倾斜角为.故选D.答案:D2过点P(1,1)的直线,将圆形区域(x,y)|x2y24分为两部分,使得这两部分的面积之差最大,则该直线的方程为()Axy20 By10Cxy0 Dx3y40解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径因为过点P(1,1)的直径所在直线的斜率为1,所以所求直线的斜率为1,方程为xy20.答案:A3过点(3,1)作圆(x1)2y21的两条切线,切点分别为A,B,则直线AB的方程为()A2xy30 B2xy30C4xy30 D4xy30解析:根据平面几何知识,直线AB一定与点(3,1),(1,0)的连线垂直,而这两点连线所在直线的斜率为,故直线AB的斜率一定是2,只有选项A中直线的斜率为2,故选A.答案:A4已知点A(1,0),B(1,0),C(0,1),直线yaxb(a>0)将ABC分割为面积相等的两部分,则b的取值范围是()A(0,1) B(1,)C(1, D,)解析:由消去x,得y,当a>0时,直线yaxb与x轴交于点(,0),结合图形(图略)知××(1),化简得(ab)2a(a1),则a.a>0,>0,解得b<.考虑极限位置,即a0,此时易得b1,故选B.答案:B5已知p:“直线l的倾斜角>”;q:“直线l的斜率k>1”,则p是q的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:当<时,tan 0,即k0,而当k>1时,即tan >1,则<<,所以p是q的必要不充分条件,故选B.答案:B6若经过点(1,0)的直线l的倾斜角是直线x2y20的倾斜角的2倍,则直线l的方程为()A4x3y40 B3x4y30C3x4y30 D4x3y40解析:设直线x2y20的倾斜角为,则其斜率tan ,直线l的斜率tan 2.又因为l经过点(1,0),所以其方程为4x3y40,故选A.答案:A7一条光线从点(2,3)射出,经y轴反射后与圆(x3)2(y2)21相切,则反射光线所在直线的斜率为()A或 B或C或 D或解析:由题知,反射光线所在直线过点(2,3),设反射光线所在直线的方程为y3k(x2),即kxy2k30.圆(x3)2(y2)21的圆心为(3,2),半径为1,且反射光线与该圆相切,1,化简得12k225k120,解得k或k.答案:D8已知倾斜角为的直线与直线x3y10垂直,则()A.B C.D解析:依题意,tan 3(0,),所以,故选C.答案:C9(20xx·天津模拟)已知m,n为正整数,且直线2x(n1)y20与直线mxny30互相平行,则2mn的最小值为()A7 B9C11 D16解析:直线2x(n1)y20与直线mxny30互相平行,2nm(n1),m2nmn,两边同除以mn可得1,m,n为正整数,2mn(2mn)5529.当且仅当时取等号故选B.答案:B10直线xcos y10(R)的倾斜角的取值范围为_解析:直线的斜率为kcos 1,1,即tan 1,1,所以0,)答案:0,)11过点A(1,2)且与直线x2y30垂直的直线方程为_解析:直线x2y30的斜率为,所以由垂直关系可得要求直线的斜率为2,所以所求方程为y22(x1),即2xy40.答案:2xy4012设mR,过定点A的动直线xmy0和过定点B的动直线mxym30交于点P(x,y),则|PA|·|PB|的最大值是_解析:动直线xmy0(m0)过定点A(0,0),动直线mxym30过定点B(1,3)由题意易得直线xmy0与直线mxym30垂直,即PAPB.所以|PA|·|PB|5,即|PA|·|PB|的最大值为5.答案:513已知直线x是函数f(x)asin xbcos x(ab0)图像的一条对称轴,求直线axbyc0的倾斜角解析:f(x)sin(x),其中tan ,将x代入,得sin()±1,即k,kZ,解得k,kZ.所以tan tan1,所以直线axbyc0的斜率为1,故倾斜角为.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!