资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,分式方程及其解法,平谷区山东庄中学 龚顺军,学习目标:,了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。,问题导入,一艘轮船在静水中的最大航速为,20,千米,/,时,它沿江以最大航速顺流航行,120,千米所用时间,与以最大航速逆流航行,80,千米所用时间相等,江水的流速为多少,?,分析:设江水的流速为,x,千米时,填空:,轮船顺流航行速度为千米时,逆流航行,速度为千米时,顺流航行,120,千米所用,的时间为小时,逆流航行,80,千米所用时间,为小时。,20+x,20-x,分式方程,像这样,,分母里含有未知数的方程叫做,分式方程,。,以前学过的,分母里不含有未知数的方程叫做,整式方程,。,【,分式方程的定义,】,分母中含未知数的方程叫做,分式方程,.,区别,整式方程的未知数不在分母中,分式方程的分母中含有未知数,判断下列说法是否正确:,(,),(,),(,),(,),下列方程中,哪些是,分式方程,?哪些,整式方程,.,整式方程,分式方程,解:,在方程两边都乘以最简公分母,(,20+x,)(,20-x,),得,,解这个整式方程,得,x=4,120(20-x)=80(20+x),检验,:,把,x,=4,代入原方程中,左边右边,因此,x,4,是原方程的解,分式方程,解分式分式方程的一般思路,整式方程,去分母,两边都乘以最简公分母,探究,下面我们一起研究下怎么样来解分式方程:,【,解分式方程,】,解分式方程,1,x-5,10,=,x,2,-25,解:,在方程两边都乘以最简公分母,(x+5)(x-5),得,,解这个整式方程,得,x=5,x+5=10,检验,:,把,x,=5,代入原方程中,发现,x-5,和,x,2,-25,的值都为,相应的分式无意义,因此,x=5,虽是方程,x+5=10,的解,但不是原分式方程,的解实际上,,这个分式方程无解,1,x-5,10,=,x,2,-25,再进一步,例,2,解方程,1,、当分式方程含有若干个分式时,通常,可用各个分式的最简公分母同乘方程两边进行去分母。,2,、解方程时一定要验根。,为什么会出现增根?,【,分式方程的解,】,思考,上面两个分式方程中,为什么,120,20+x,80,20,-,x,=,去分母后得到的整式方程的解就是它的解,而,去分母后得到的整式方程的解却不,1,x-5,10,=,x,2,-25,是原分式方程的解呢?,1,x-5,10,=,x,2,-25,我们来观察去分母的过程,120,20+x,80,20,-,x,=,120(20-x)=80(20+x),x+5=10,两边同乘,(20+x)(20-x),当,x=4,时,(20+x)(20-x),0,两边同乘,(x+5)(x-5),当x=5时,(x+5)(x-5)=0,分式两边同乘了不为,0,的式子,所得整式方程的解与,分式方程的解相同,.,分式两边同乘了等于,0,的式子,所得整式方程的解使分母为,0,这个整式方程的解就不是原分式方程的解,【,分式方程解的检验,】,1,x-5,10,=,x,2,-25,120,20+x,80,20,-,x,=,120(20-x)=80(20+x),x+5=10,两边同乘,(20+x)(20-x),当,x=4,时,(20+x)(20-x),0,两边同乘,(x+5)(x-5),当x=5时,(x+5)(x-5)=0,分式两边同乘了不为,0,的式子,所得整式方程的解与,分式方程的解相同,.,分式两边同乘了等于,0,的式子,所得整式方程的解使分母为,0,这个整式方程的解就不是原分式方程的解,解分式方程时,去分母后所得整式方程的解有可能,使原方程的分母为,所以,分式方程的解必须检验,怎样检验这个整式方程的解是不是原分式的解?,将整式方程的解代入最简公分母,如果最简公分母的值不为,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解,解分式方程的一般步骤,1,、在方程的两边都乘以,最简公分母,,约去分母,化成,整式方程,.,2,、解这个整式方程,.,3,、把整式方程的解代入,最简公分母,,如果最简公分母的值,不为,0,,则整式方程的解是原分式方程的解;,否则,,这个解不是原分式方程的解,必须舍去,.,4,、写出原方程的根,.,解分式方程的思路是:,分式方程,整式,方程,去分母,一化二解三检验,【,例题,】,解分式方程,x-1,=,(x-1)(x+2),3,x,-1,解:方程两边同乘以,最简公分母,(x,1),(,x,2),得,X(x+2)-(x-1)(x+2)=3,解,整式方程,得,x,=,1,检验,:当,x=,1,时,,(x,1),(,x,2),,不是原分式方程的解,原分式方程无解,练习,解分式方程,2,x-1,4,=,x,2,-1,(1),1,x,2,-x,5,=,X,2,+x,(2),通过例题的讲解和练习的操作,你能总结出解分式方程的一般步骤吗,?,【,小结,】,解分式方程的一般步骤的框架图:,分式方程,整式方程,a,是分式,方程的解,X=,a,a,不是分式,方程的解,去分母,解整式方程,检验,目标,最简公分,母不为,最简公分,母为,1,、解方程分式方程,(,1,),(,2,),(,3,),作业,作业,2,、求分式方程 产生增根时,m,的值,。,3,、当,K,为何值时,方程,负数?,
展开阅读全文