资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,专题四:数列通项的求法,主讲人:,卢高东,专题四:数列通项的求法主讲人:卢高东,1,数列的通项公式是数列的核心之一,有了数列通项就可以求出任何一项及其前,n,项和研究数列的通项往往是解题的关键点和突破口,常用的求数列通项公式的方法有:,观察归纳法;,定义法;,递推公式法;,由,S,n,求,a,n,法,.,数列的通项公式是数列的核心之一,有了数列通项,2,反思:观察各项的结构特点、项与序号之间的关系、项与项之间的关系,进行类比、归纳、猜想,精讲精练,观察归纳法,例,1,根据下面数列的前几项的值,写出数列的一个通项公式:,(,1,),3,,,15,,,35,,,63,,,99,,,(,2,),5,,,55,,,555,,,5555,,,55555,,,(,3,),2,,,0,,,2,,,0,,,2,,,(,4,),1,,,3,,,3,,,5,,,5,,,7,,,7,,,9,,,9,,,(,1,),a,n,=,(,2,n,-1)(2,n,+1),(,3,),a,n,=(-1),n,+1,+1,反思:观察各项的结构特点、项与序号之间的关系、项与项之间的关,3,例,2,(,1,)(,2009,陕西卷)设等差数列,a,n,的前,n,项和为,S,n,,若,a,6,=,S,3,=12,,则,a,n,=_,(,2,)(,2010,福建卷)在等比数列,a,n,中,若公比为,4,,且前,3,项之和等于,21,,则该数列的通项公式,a,n,=_,4,n,-1,精讲精练,定义法,2,n,反思:利用定义法求数列通项时,要注意不用错定义,设法求出首项与公差(公比)后再写出通项,例2(1)(2009陕西卷)设等差数列an的前n项和为,4,例,3,(,2009,陕西卷)已知数列,a,n,满足,,a,1,=1,,,a,2,=2,,,2,a,n,+2,=,a,n,+,a,n,+1,(,1,)令,b,n,=,a,n,+1,-,a,n,,证明:,b,n,为等比数列;,()求,a,n,的通项公式,(,1,)证:,b,1,=,a,2,-,a,1,=1,,,精讲精练,递推公式法,累加法,b,n,是以,1,为首项,为公比的等比数列,例3(2009陕西卷)已知数列an满足,a1=1,a2,5,例,3,(,2009,陕西卷)已知数列,a,n,满足,,a,1,=1,,,a,2,=2,,,2,a,n,+2,=,a,n,+,a,n,+1,(,1,)令,b,n,=,a,n,+1,-,a,n,,证明:,b,n,为等比数列;,()求,a,n,的通项公式,(,2,)解:由(,1,)知,b,n,=,a,n,+1,-,a,n,=,当,n,=1,时也适合,精讲精练,递推公式法,累加法,反思:,a,n,+1,=,a,n,+,f,(,n,),型用累加法,例3(2009陕西卷)已知数列an满足,a1=1,a2,6,例,4,数列,a,n,中,,求数列,a,n,的通项公式,解:由已知得,精讲精练,递推公式法,累乘法,反思:,a,n,+1,=,f,(,n,),a,n,型用累乘法,例4 数列an中,解:由已知得精讲精练递推公式法,7,例,5,数列,a,n,中,,a,1,=1,,,a,n,+1,=3,a,n,+2,,求数列,a,n,的通项公式,解:由已知得,a,n,+1,+1=3,(,a,n,+1,),,a,n,+1,是一个首项为,2,,公比为,3,的等比数列,,a,n,+1=23,n,-1,,,故,a,n,=23,n,-1,-1,精讲精练,递推公式法,构造法,反思:,a,n,+1,=,p,a,n,+,q,型用构造法,化为,a,n,+1,-,t,=,p,(,a,n,-,t,),例5 数列an中,a1=1,an+1=3an+2,求数,8,例,6,数列,a,n,中,,a,1,=4,,,a,n,=3,a,n,-1,+2,n,-1,(,n,1,),求数列,a,n,的通项公式,解:设,b,n,=,a,n,+,An,+,B,,则,a,n,=,b,n,-,An,-,B,,将,a,n,,,a,n,-1,代入得,b,n,-,An,-,B,=3,b,n,-1,-,A,(,n,-1)-,B,+2,n,-1,=3,b,n,-1,-(3,A,-2),n,-(3,B,-3,A,+1),,,A,=3,A,-2,且,B,=3,B,-3,A,+1,,得,A,=,B,=1,,,取,b,n,=,a,n,+,n,+1,,则,b,n,=3,b,n,-1,,又,b,1,=6,,,b,n,=63,n,-1,,故,a,n,=23,n,-,n,-1,精讲精练,递推公式法,构造法,反思:,a,n,+1,=,p,a,n,+,f,(,n,),型用构造法,例6 数列an中,a1=4,an=3an-1+2n-1,9,例,7,(,2008,全国,2,卷)数列,a,n,的前,n,项和为,S,n,,,a,1,=1,,,S,n,+1,=4,a,n,+2,,设,b,n,=,a,n,+1,-2,a,n,,证明数列,b,n,是等比数列,并求数列,a,n,的通项公式,解:当,n,=1,时,,a,1,+,a,2,=4,a,1,+2,,得,a,2,=3,a,1,+2=5,,,当,n,2,时,有,S,n,=4,a,n,-1,+2,,得,a,n,+1,=4,a,n,-4,a,n,-1,,,a,n,+1,-2,a,n,=2(,a,n,-,a,n,-1,),,又,b,n,=,a,n,+1,-2,a,n,,,b,n,=2,b,n,-1,,,b,n,=32,n,-1,,,a,n,+1,-2,a,n,=32,n,-1,,,精讲精练,递推公式法,构造法,反思:,a,n,+1,=,p,a,n,+,q,n,型用构造法,例7(2008全国2卷)数列an的前n项和为Sn,a1,10,例,8,数列,a,n,中,,a,1,=2,,,求数列,a,n,的通项公式,解:由已知得,精讲精练,递推公式法,构造法,例8 数列an 中,a1=2,解:由已知得精讲精练,11,例,9,(,2009,浙江卷)数列,a,n,的前,n,项和为,S,n,,,S,n,=,kn,2,+,n,,求,a,1,及,a,n,解:当,n,=1,时,,a,1,=,S,1,=,k,+1,,,当,n,2,时,,a,n,=,S,n,-,S,n,-1,=,kn,2,+,n,-,k,(,n,-1),2,+(,n,-1),=2,kn,-,k,+1,,当,n,=1,时也成立,,a,n,=2,kn,-,k,+1.,精讲精练,由,S,n,求,a,n,法,例9(2009浙江卷)数列an的前n项和为Sn,Sn=,12,例,10,数列,a,n,的前,n,项和为,S,n,,已知,a,1,=,a,,,a,n,+1,=,S,n,+3,n,,,b,n,=,S,n,-3,n,,求,b,n,,,a,n,解:由题意知,,S,n,+1,-,S,n,=,S,n,+3,n,,,S,n,+1,=2,S,n,+3,n,,,S,n,+1,-3,n,+1,=2(,S,n,-3,n,),,即,b,n,+1,=2,b,n,,,又,b,1,=,a,-3,,,b,n,=(,a,-3)2,n,-1,精讲精练,由,S,n,求,a,n,法,例10 数列an的前n项和为Sn,已知a1=a,an+1,13,练习,1,根据下面数列的前几项的值,写出数列的一个通项公式:,(,1,),1,,,3,,,7,,,15,,,31,,,(,1,),a,n,=2,n,-1,精讲精练,观察归纳法,练习1 根据下面数列的前几项的值,写出数列的一个通项公式:(,14,练习,2,(,2009,福建卷)等比数列,a,n,中,已知,a,1,=2,,,a,4,=16,(,1,)求数列,a,n,的通项公式;,(,2,)若,a,3,,,a,5,分别为等差数列,b,n,的第,3,项和第,5,项,试求数列,b,n,的通项公式,(,1,),a,n,=2,n,精讲精练,定义法,(,2,),b,n,=12,n,-28,练习2(2009福建卷)等比数列an中,已知a1=2,,15,练习,3,(,2009,全国,1,卷)数列,a,n,中,,a,1,=1,,,求数列,b,n,的通项公式,解:由已知得,利用累加法可求得,精讲精练,递推公式法,累加法,练习3(2009全国1卷)数列an中,a1=1,解:由,16,练习,4,数列,a,n,中,,求数列,a,n,的通项公式,解:由已知得,精讲精练,递推公式法,累乘法,练习4 数列an中,解:由已知得精讲精练递推公式法,17,练习,5,(,2010,全国,1,卷)数列,a,n,中,,求数列,b,n,的通项公式,解:由已知得,精讲精练,递推公式法,构造法,练习5(2010 全国1卷)数列an中,解:由已知得精讲,18,练习,6,数列,a,n,的前,n,项和为,S,n,,,S,n,=2,n,2,+,n,+1,,求通项,a,n,解:当,n,=1,时,,a,1,=,S,1,=4,,,当,n,2,时,,a,n,=,S,n,-,S,n,-1,=,2n,2,+,n,+1-2(,n,-1),2,+(,n,-1)+1,=4,n,-1,,当,n,=1,时不成立,,精讲精练,由,S,n,求,a,n,法,练习6 数列an的前n项和为Sn,Sn=2n2+n+1,,19,2.,在数列,a,n,中,,a,1,=2,,,则,a,n,=,(),(,A,),2+ln,n,(,B,),2+(,n,-1)ln,n,(,C,),2+,n,ln,n,(,D,),1+,n,+ln,n,强化提高,1.,根据下面数列的前几项的值,写出数列的一个通项公式:,1,,,3,,,6,,,10,,,15,,,A,2.在数列an中,a1=2,强化提高1.根据下面数列的前,20,强化提高,3.,数列,a,n,为各项都是正整数的等差数列,其前项和为,S,n,,数列,b,n,为等比数列,且,a,1,=3,,,b,1,=1,,数列 是公比为,64,的等比数列,,b,2,S,2,=64,求,a,n,,,b,n,解:设,a,n,的公差为,d,,,b,n,的公比为,q,,,则,d,为正整 数,,a,n,=3+(,n,-1),d,,,b,n,=,q,n,-1,,,依题意有,由,(6-,d,),q,=64,知,q,为正有理数,,故,d,为,6,的因子,1,,,2,,,3,,,6,之一,解得,d,=2,,,q,=8,,,故,a,n,=3+2(,n,-1)=2,n,+1,,,b,n,=8,n,-1,强化提高3.数列an为各项都是正整数的等差数列,其前项和,21,4.,数列,a,n,中,,求数列,a,n,的通项公式,解:由已知,当,n,2,时,,强化提高,当,n,=1,时,上式也成立,.,4.数列an中,解:由已知,当n2时,强化提高当n=1,22,5.,数列,a,n,的前,n,项和为,S,n,,,求数列,a,n,的通项公式,解:当,n,=1,时,,a,2,=2,S,1,=2,a,1,=2,,,当,n,2,时,,a,n,+1,-,a,n,=2,S,n,-2,S,n,-1,=2,a,n,,,即,a,n,+1,=3,a,n,,,对于,n,=1,上式不符合,,强化提高,5.数列an的前n项和为Sn,解:当n=1时,a2=2S,23,6.,数列,a,n,中,,求数列,a,n,的通项公式,解:由已知得,,强化提高,采用累加法,得,6.数列an中,解:由已知得,强化提高采用累加法,得,24,饭卡打开巴士风格反对广泛的,的非官是大
展开阅读全文